Antimicrobial Graphene Coatings

Antimicrobial Graphene

Coatings


In less than 20 years the world has faced a series of abnormal phenomena caused by highly infectious pathogens. The easy and rapid transmission of infections forces us to seek increasingly efficient strategies to strengthen health services, in addition to representing a radical change in our lifestyle, where extreme hygiene techniques are in first place of importance to avoid the spread and massive contagion inside and outside hospitals.

Viral diseases of greater impact.

  • 2002-2003. Severe acute respiratory syndrome (SARS-Cov).
  • 2012. Middle East Respiratory Syndrome (MERS-Cov).
  • 2014- 2016. Ebola.
  • 2019- 2022. SARS-Cov-2.

>6.5 million deaths.

Dangerous bacteria for human health:

  • Staphylococcus aureus.
  • Streptococcus pneumoniae.
  • Pseudomonas aeruginosa.
  • Haemophilus influenzae.
  • Helicobacter pylori.

Hongos frecuentes en ambiente doméstico:

  • Aspergillus spp.
  • Cladosporium spp.
  • Alternaria spp.
  • Acremonium spp.
  • Epiccocum spp.
  • Penicillium spp.
  • Stachybotrys spp.


Graphene as an adjuvant in infection control


In 2018, Energeia- Graphenemex® launched the antimicrobial Graphenergy line, made up of two specialized vinyl- and vinyl-acrylic-based coatings with graphene oxide, whose antimicrobial potential is 400 times higher than common products, helping to keep surfaces free of fungi and bacteria for a long time.

In vitro studies and in a relevant environment carried out by the Laboratory of Pathology, Biochemistry and Microbiology of the Faculty of Stomatology of the U.A.S.L.P., showed that surfaces protected with antimicrobial Graphenergy remain free of microorganisms for more than 6 months, without the need for additional chemicals. Figure 1.

Fig. 1. Results at 2, 4 and 6 months on the protection of antimicrobial Graphenergy compared to a control group (No Graphene Oxide).
Important: A clean surface is in the range of 1-10 CFU/cm2.


In 2022, the strategic alliance between the companies Energeia-Graphenemex® and Oxical® is preparing to launch a new 100% natural coating, without toxic compounds (VOCs), highly waterproof, breathable and highly antimicrobial, made from high-quality and purity lime modified with Graphene nanoparticles, under the ecological Graphenecal brand.

Its extraordinary antimicrobial capacity is not only a great aid in keeping spaces free of microorganisms, but also protects surfaces against biodeterioration, particularly those with high historical value. Figure 2.

Fig. 2. Graphene-free lime paint has a microbial biofilm on more than 90% of its surface. The area covered with organic Graphenecal remained free of contamination for more than 100 days of incubation. The antimicrobial effect of organic Graphenecal is highly effective, with a reduction of microorganisms of 7 Log10.

Is graphene nanotechnology safe?


Yes, Graphenergy and Graphenecal antimicrobial coatings are as safe as any conventional paint or coating. The graphene and graphene oxide nanoparticles contained in its formulations do not shed or release toxic substances into the environment.

“Not all microorganisms are dangerous, but it is better to keep them away”

How do graphene materials work?


  1. Physical barrier- High impermeability. Graphene materials are usually presented in millions of blocks composed of 1 to 10 nanometric sheets similar to a pack of cards, with multiple sinuous paths between each sheet that act as an external barrier that suppresses the entry of essential nutrients for microbial growth.

  2. Graphene and its derivatives can act as electron donors or acceptors, altering the respiratory chain of the microorganism or extracting its electrons. This imbalance in the form of a nano-circuit is so fast that it does not give the microorganism time to recover and, therefore, inactivates it before adhering to the surface.

  3. Structural damage. The edges of the nanomaterial sheets act like small knives that damage or break the cell membrane of the microorganism, altering its functioning and preventing its viability.

Do graphene materials have antiviral activity?


The antiviral effect of graphene materials seems not to be very different from that described against fungi and bacteria. The hypotheses are directed towards an interesting synergistic effect between impermeability, structural damage and electrostatic interactions due to the positive polarity of some viruses (SARS-Cov-2) and the negative polarity of graphene oxide, in addition to its great protein-anchoring capacity.



Energeia- Graphenemex® is the pioneer Mexican company in Latin America focused on the research and production of graphene materials for the development of applications at an industrial level. In addition to adding value to its products with the multifunctional properties of Graphene and its derivatives, the company also aims to create strategic alliances to support innovative developments with graphene nanotechnology.


References

  1. García-Contreras R, Guzmán Juárez H, López-Ramos D & Alvarez Gayosso C. Biological and physico-mechanical properties of poly (methyl methacrylate) enriched with graphene oxide as a potential biomaterial. J Oral Res 2021; 10(2):1-9. Doi:10.17126/joralres. 2021.019
  2. UM.D. Giulio, R. Zappacosta, S.D. Lodovico, E.D. Campli, G. Siani, A. Fontana, L. Cellini, Antimicrobial and antibiofilm eficacy of graphene oxide against chronic wound microorganisms. Antimicrob. Agents Chemother. 62(7), e00547-18 (2018). https://doi.org/10.1128/AAC.00547-18
  3. H.E. Karahan, C. Wiraja, C. Xu, J. Wei, Y. Wang, L. Wang, F. Liu, Y. Chen, Graphene materials in antimicrobial nanomedicine: current status and future perspectives. Adv. Healthc. Mater. 7(13), 1701406 (2018). https://doi.org/10.1002/ adhm.201701406
  4. Sydlik SA, Jhunjhunwala S, Webber MJ, Anderson DG, Langer R. In vivo compatibility of graphene oxide with differing oxidation states. ACS Nano. 2015. 9: 3866
  5. Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010. 10: 3318.
  6. Bhattacharya K, Farcal LR, Fadeel B. Shifting identities of metal oxide nanoparticles: focus on inflammation. 2014. MRS Bull; 39: 970
  7. Huang PJ, Pautler R, Shanmugaraj J, Labbé G, Liu J. Inhibiting the VIM-2 metallo-β-lactamase by graphene oxide and carbon nanotubes. ACS Appl Mater Interfaces 2015; 7: 9898.
  8. Moghimi SM, Wibroe PP, Wu L, Farhangrazi ZS. Insidious pathogen-mimicking properties of nanoparticles in triggering the lectin pathway of the complement system. Eur J Nanomedicine. 2015; 7: 263.
  9. Bhattacharya K, Mukherjee SP., Gallud A., Burkert SC., Bistarelli S., Bellucci S., Bottini, M., Star A., Fadeel B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine: Nanotechnology, Biology, and Medicine. 2016. 12. 333

Graphene in the paper industry

Graphene

in the paper industry


The paper industry represents a very broad and versatile market, in fact and despite the challenges it faces due to the impact of digital media and its competition with plastic, its world production continues to be considerable, exceeding 400 million tons distributed in products for containers and packaging, for hygienic and sanitary use, as well as paper for printing, writing and the press.

“It is estimated that by the end of 2022 cardboard will represent two thirds of world paper production”

On the other hand, the continuous need for innovation as well as the search for solutions to the problems inherent in these products, such as their easy contamination and permeability, have made nanotechnology remain an important tool with the use of different nanomaterials such as nano- cellulose crystals and nanofibers, nanoparticles of silicon oxide (SiO2), titanium dioxide (TiO2), zinc dioxide (ZrO2) and recently graphene materials such as graphene and graphene oxide (GO) 1 with the aim of design nano-scale building blocks to obtain denser and less porous networks that, in addition to improving the quality of the final product, also diversify its use.

Cellulose, in addition to being one of the most abundant natural polymers on earth, is also the main raw material for the paper industry. Graphene is obtained from graphite, a very abundant carbon mineral in Mexico”

How do graphene materials benefit the paper industry?


When talking about graphene, the main points of reference are its resistance, impermeability, flexibility, conductivity, lightness, biocompatibility, etc., all in a single material. Given this, it is important to understand that the behavior of graphene materials will depend, among other things, on the type of graphene, functionalization and concentration, but also on the processes involved in each industry and the nature of the materials with which it will be combined to transfer its properties and therefore there is no exact formula for each usage target, for example:


Mechanical strength- In the case of cellulose films, the presence of as little as 0.5% GO can significantly improve tensile strength, elongation at break and fracture energy by 78%, 172% and 397%, respectively; useful for its application in high performance bioplastic films2.


Antimicrobial protection- Among the benefits of interest to the paper industry are its biocompatibility, its physical barrier properties and its antimicrobial activity. For example, a study that prepared a paper coating with 0.05% GO reduced the growth rate of bacteria such as E. coli and S. aureus by 73% and 53%, respectively3,4. This is because GO helps limit microbial adhesion, replication and penetration.

Protection against UV radiation- According to another report, the use of 2% GO in cellulose films blocks UVA and UVB radiation by 66.7% and 54.2% respectively, without affecting the transmission of visible light, an interesting property for the design of protection and packaging materials.5


Barrier properties- Graphene materials present nano-channels between their sheets that represent a tortuous path for the passage of large molecules and, therefore, it is widely investigated both for its great impermeability against liquids and gases, but also for its potential benefits for the decontamination, purification and even desalination of seawater. Research carried out on cellulose acetate (CA) membranes for desalination described that the use of 1% GO improves morphology, hydrophilicity, porosity, roughness, mechanical resistance, thermal stability and, therefore, its operating efficiency, as well as it has happened with other types of membranes such as polysulfone, in which a concentration of 0.2% GO can be enough to improve their performance by up to 72%, in terms of water flow and salt rejection in tests with sodium sulfate. sodium6,7. The foregoing is not only reflected in the efficiency of filtration and/or desalination, but also the optimization of maintenance resources and energy consumption of said systems.


Energeia- Graphenemex®, the leading company in Latin America in the design and development of applications with graphene materials, continuously works to solve the obstacles that graphene faces to reach the market and, through strategic alliances with other industries, seeks to make this technology available to the industry for solving various problems.


References

  1. Trache, D., Thakur, V. K., & Boukherroub, R. 2020., Cellulose nanocrystals/graphene hybrids—a promising new class of materials for advanced applications. Nanomaterials, 10(8), 1523.
  2. M. Akhtari, M. Dehghani-Firouzabadi, M. Aliabadi, M. Arefkhani. Effect of graphene oxide nanoparticle coatings on the strength of packaging paper and its barrier and antibacterial properties. 2019., Bois et Forêts des Tropiques. 342, 69.
  3. W. Hu, Ch. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, and Ch. Fan. Graphene-Based Antibacterial Paper. 2010. ACS Nano, 4, 7, 4317–4323
  4. X. Liu, T. Zhang, K. Pang, Y. Duan and J. Zhang. Graphene oxide/cellulose composite films with enhanced UV-shielding and mechanical properties prepared in NaOH/urea aqueous solution. 2016., RSC Adv., 6, 73358
  5. Zhang, X. F., Song, L., Wang, Z., Wang, Y., Wan, L., & Yao, J. 2020., Highly transparent graphene oxide/cellulose composite film bearing ultraviolet shielding property. International journal of biological macromolecules, 145, 663.
  6. S. M. Ghaseminezhad, M. Barikani, M. Salehirad.  Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination. Composites Part B: Engineering. 2019., 161, 15, 320.
  7. B.M. Ganesh, Arun M. Isloor, A.F.Ismail., Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. 2013., Desalination., 313, 199.

Graphene Oxide: Generalities, uses and applications

GRAPHENE OXIDE:

GENERALITIES, USES AND APPLICATIONS


Since graphene was isolated for the first time in 2004 by the Manchester group, this nanomaterial has proven to be the most revolutionary for the development of new applications at an industrial level.


Graphene has extraordinary electrical, optical, thermal properties and high mechanical resistance. The properties of graphene are attributed to its structure in the form of two-dimensional (2D) sheets, made up of hexagonally bonded carbon atoms and a thickness of one carbon atom.


Currently there are different methods of graphene production, these can be classified into two methods, according to their origin, the “bottom-up” method and the “top down” method. The “bottom-Up” method consists in the creation of graphene structures through building blocks (atoms, molecules), for example, by Chemical Vapor Deposition (CVD); and the “top down” method involves the production of graphene from the oxidation of graphite. Graphite is made up of sheets of graphene that are stacked on top of each other. The following diagram represents the process for obtaining graphene from the oxidation of graphite.

Schematic diagram of the process for obtaining GO, through the oxidation of graphite.


The graphite oxidation process begins with the addition of graphite in sulfuric acid (H2SO4), with constant mechanical stirring. Subsequently, potassium permanganate (KMnO4) is slowly added, producing a chemical reaction that allows the graphite (graphene sheets stacked on top of each other) to be chemically modified in its structure. When KMnO4 reacts with H2SO4, it forms manganese oxide VII (Mn2O7), which is a very selective oxidizing agent on double bond aromatic compounds, such as graphite. The oxidizing agent molecularly attacks the structure of each graphene sheet in the graphite, grafting oxygenated functional groups (with oxygen), such as epoxide groups (C-O-C) and hydroxyl groups (-OH), on each sheet, and carboxyl groups (-COOH, CO2H ) on the edges of each sheet, obtaining graphite oxide and graphene oxide (GO), see Figure 1.

Figure 1. Structure of graphene oxide

The incorporation of oxygenated functional groups allows a material such as graphite, which is highly hydrophobic (which repels water) and a good electrical conductor, to become graphite oxide and graphene oxide (GO), highly hydrophilic materials, that is, they mix and disperse easily with water (See Figure 2). GO is chemically similar to graphite oxide, but structurally differs in the arrangement and number of stacked sheets.

The GO can be defined as a single exfoliated graphene sheet or stack of few sheets (3-4) that is functionalized with different oxygenated groups. Among its main characteristics is that it is hydrophilic, insulating and hygroscopic (absorbs moisture). On the other hand, graphene oxide sheets possess a large surface area and exhibit high mechanical strength and flexibility.


Applications


Graphene oxide has attracted great interest in various fields of science and technology, due to its remarkable mechanical, chemical, and thermal properties, among others. So numerous investigations began, to take advantage of the properties of graphene oxide.


In 2011, the first investigations of the use of GO as a precursor in the large-scale production of graphene emerged, for use as filler/reinforcement material/in polymeric matrices, such as high-density polyethylene (HDPE) and low-density polyethylene (HDPE). density (LDPE).


By 2014, GO was considered feasible for use as a flame retardant agent. Research is still ongoing to functionalize it with different polymeric materials.


In 2017, the first reports of the manufacture of GO-based membranes began, since it is impermeable to gases and liquids, showing its ability to filter small particles, organic molecules and even its use for seawater desalination.


In 2018, Energeia-Graphenemex started research on graphene oxide as a new additive for the production of anticorrosive and antimicrobial coatings. By 2019, studies of graphene oxide in coatings with antibacterial behavior increased, associated with the fact that GO is capable of penetrating the cell membrane of bacteria, producing oxidative stress and inhibiting their reproduction.


In particular, the functionalization of GO allows it to be applicable in biological systems, development of biosensors for the identification of specific molecules, drug delivery systems, among others.


Energeia Graphenemex®, a leading Mexican company in Latin America in research and production of graphene materials for the development of industrial applications. It has extensive experience in the production of graphene oxide (GO) on a large scale, with different degrees of oxidation and high quality for use in different applications and industries. Currently, it uses graphene oxide in the production of concrete additives and anticorrosive and antimicrobial coatings that are marketed under the Graphenergy brand.


References

  1. M. Fang, K. Wang, H. Lu, Y. Yang y S. Nutt, «Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites,» Journal of Materials Chemistry, vol. 19, pp. 7098-7105, 2009.
  2. B. Dittrich, K.-a. Wartig, R. Mülhaupt y B. Schartel, «Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene,» Polymers, vol. 6, pp. 2875-2895, 2014.
  3. Y.-j. Wan, L.-x. Gong, L.-c. Tang, L.-b. Wu y J.-x. Jiang, «Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide,» COMPOSITES PART A, vol. 64, pp. 79-89, 2014.
  4. J. Wang, C. Xu, H. Hu, L. Wan, R. Chen, H. Zheng, F. Liu, M. Zhang, X. Shang y X. Wang, «Synthesis , mechanical , and barrier properties of LDPE / Graphene nanocomposites using vinyl triethoxysilane as a coupling agent,» J. Nanopart Res, vol. 13, pp. 869-878, 2011.

Graphene in the coatings and paints industry

GRAPHENE IN THE

COATINGS AND PAINTS INDUSTRY


Graphene is currently the most revolutionary nanotechnological additive in the coatings and paints industry.


Coatings are regularly used for decorative purposes and for surface protection, especially for protection against corrosion, humidity, fouling, mechanical wear, among others. At a commercial level, there is a wide variety of coatings based on different types of resins and additives, their efficiency is generally associated with an increase in cost. However, the coatings still have low resistance to corrosion, abrasion and limited chemical and thermal resistance.


Therefore, the coatings industry, like many other industries, is constantly researching and developing new technologies for the formulation and application of new and better coatings.


Since 2004, when the graphene nanomaterial was first isolated, scientists in the coatings industry have been looking for ways to use graphene as an additive to improve the performance and technology of coatings in different application areas.


Graphene has unique properties, mainly attributed to its structure in the form of two-dimensional (2D) sheets, formed by carbon atoms linked in a hexagonal manner and a thickness of one carbon atom. This nanomaterial has extraordinary properties, which include high electrical and thermal conductivity, and high mechanical resistance. In addition, it possesses other distinctive properties, including gas impermeability, chemical resistance, antibacterial potential, and high surface area.


Graphene’s carbon-based composition and its compatibility make it a viable additive for organic polymeric coatings.

Among the advantages offered by the use of graphene is its ability to incorporate new or improved characteristics in the coatings. Different types of multifunctional coatings can be developed, such as:


  • Anticorrosive coatings

One of the main uses of graphene coatings is protection against corrosion. Graphene creates pathways that are very tortuous, preventing water and oxygen molecules and/or chemical agents from diffusing to the surface of metal-based materials, resulting in metal protection against oxidation and corrosion. corrosion.


  • Fire retardant coatings

Conventional additives based on halogens (bromine and chlorine), as well as phosphorous, melamine and inorganic compounds, are used to improve the fire resistance of coatings, however, these materials are toxic to humans and the environment. On the other hand, the high content of these flame retardants can cause the deterioration of other properties in the coatings.

Therefore, the application of graphene as a new additive in coatings can reduce or eliminate the use of conventional flame retardant additives, it can also provide the coating with better performance against extreme temperatures for a longer time and with better mechanical stability.


  • Coatings resistant to wear or abrasión

Graphene has proven to be a potential candidate for wear, abrasion and scratch resistant coatings. Graphene is the lightest material and two hundred times more resistant than steel, in addition, graphene has a high capacity to withstand large pressure differences and high mechanical resistance.


  • Antifouling coatings

Graphene is a good candidate for use as an anti-stick agent. Its application reduces the problem of fouling and the deposition of organic and inorganic materials in the hulls of ships, ships or marine vessels, oil platforms, among others. This type of application is mainly attributed to the hydrophobic (water repellent) and barrier properties of graphene.


  • Antimicrobial coatings

The use of graphene or graphene oxide sheets as an antimicrobial agent is innovative, since there are studies that have shown a strong antimicrobial activity against a wide variety of microorganisms, including Gram +, Gram – bacteria and fungi.

Associated with the fact that graphene materials are capable of penetrating the cell membrane of microorganisms, producing oxidative stress and inhibiting their reproduction.

Globally, research and development of graphene-based coatings continues. Currently there are several companies and institutions that have made improved formulations with graphene for coatings, among which the following stand out:


  • Applied Graphene Materials, based in the United Kingdom, in collaboration with the American company Sherwin-Williams, are developing graphene-based anticorrosive paints. Its objective is to incorporate graphene in different formulations, especially in maritime paint for use in ship hulls to protect them from corrosion.
  • The Sixth Element Materials, a Chinese company that focuses on the research, development and sale of graphene materials, has launched a graphene-zinc-based anticorrosive primer for offshore wind power towers.
  • Graphenstone, a Spanish company, has developed ecological paint that combines graphene and lime technology. Obtaining paints with greater resistance, flexibility, quality and a longer life span compared to conventional lime-based paints.

Energeia – Graphenemex®, a leading Mexican company in Latin America in the research and production of graphene materials for the development of industrial applications, through its Graphenergy line, has launched a wide range of nanotechnological coatings with graphene. These coatings offer high anticorrosive and antimicrobial protection. In addition, it provides high resistance to wear, resistance to UV rays, impermeability and extraordinary adherence, in order to improve the useful life of any surface or installation and reduce maintenance costs.


Graphene coatings, in addition to having anticorrosive protection, can provide greater chemical resistance, UV resistance, higher thermal performance in a wide range of temperatures, as well as more flexible and crack-resistant coatings.


References

  1. DuMée, L.F., et al., Carbon, 87, 395–408 (2015); doi:10.1016/j.carbon.2015.02.042.
  2. Wang, E.N., et al., Nano Lett., 15 (5), 2902–2909 (2015).
  3. J. Chen, H. Peng y X. Wang, Nanoscale, vol.6, pp. 1879-1889, 2014
  4. Md J. Nine, Martin A. Cole, Diana N.H. Tran, and Dusan Losic, J. Mat. Chem. A, 2015.
  5. Sachin Sharma Ashok Kumar, Shahid Bashir, K. Ramesh, S. Ramesh, Progress in Organic Coatings, 154, (2021)

Use of Graphene for automotive care

Use of Graphene

for automotive care

Just as continuous exposure to solar radiation is harmful to our skin, it also affects the appearance of cars, in particular it causes damage to paint, moldings, tires and other auto parts. In fact, the sun, acid rain and temperature changes are three of its main enemies, for that reason there are countless product options on the market for its care.

Graphene is the most interesting form in which Carbon can occur and consists of sheets of carbon atoms extracted mainly from Graphite or from some gases. The great scientific and technological relevance of this material is due to the particular organization of its atoms, which gives it surprising and numerous properties that have captured the attention of a large number of industries, including the automotive industry.

The potential uses attributed to Graphene for this industry are the manufacture of coatings for chassis and bodies, plastics for auto parts, either to improve their quality or to totally or partially replace metal parts, tires, textiles, greases, lubricants and products for car care.

Energeia- Graphenemex® dedicated to the research and production of graphene materials as well as the development of applications at an industrial level, in 2018 under the Nanocar® brand, placed on the market the first line of products with Graphene for automotive care.

Benefits:

Nanocar® products form a protective and nano-filling film for defects that allows the atomic sheets of Graphene to adhere to the surfaces of the bodywork, protecting against dust and moisture, delaying the effects of corrosion, as well as acting as a barrier against UV radiation and as a temperature dissipator to limit the long-term deterioration of the paint. In addition, the continuous use of Nanocar® products facilitates subsequent cleaning, without leaving a trace of drying, even when washing is carried out with hot surfaces.

Relationship of the properties of Graphene and its effects on Nanocar® products

Drafting: EF/DHS

Graphene and the Food Packaging Industry

Graphene

and the Food Packaging Industry


According to data from the World Bank, every year in Mexico 24 million tons of food are wasted. This means that 34% of the country’s production is not only NOT consumed, but also generates an average expense of 491 billion pesos.

This impact is not only economic, but it is a problem that extends to the social sphere, due to the well-known food crisis and to the environment, due to the high water requirements for food production processes that will not be used and whose decomposition will contribute considerable CO2 emissions that contribute to global warming.


According to the Food and Agriculture Organization of the United Nations, the loss and food waste exceeds 1,300 million tons per year.


Within this multifactorial problem, the container and packaging industry, also known as “packing”, is a crucial actor considering that there are unavoidable conditions such as temperature, humidity, lighting, oxygen and numerous handling practices throughout the entire supply chain. production of food, which affect its quality, shelf life and acceptability by consumers.


In the search for solutions to improve the quality of packing products and, consequently, their content, nanotechnology has been a great ally. For example, to avoid microbial contamination, nanoparticles of silver, titanium dioxide, copper oxide, carbon nanotubes or magnesium oxide are used; to improve the mechanical or barrier properties, it is common to use nanoparticles of silicate, clay, polyamide, iron or iron oxides, cellulose nanofibers and for other needs there are nanoparticles of tungsten, molybdenum, barium sulfate, barium titanate , chitosan, zeolites, activated carbon, etc.


Graphene nanoparticles are mainly made up of carbon, like graphite and diamond, but with multifunctional characteristics. This means that they do not have a single function, but rather, unlike other nanoparticles, Graphene, due to its extraordinary physical and chemical properties, can be used for different purposes, for example, to design lighter and more resistant products, with greater impermeability against liquids and gases, in addition to protecting against microbial contamination and against UV radiation, among other properties that substantially improve the performance of the compounds with which it is combined.



“Graphene has crossed the limits of laboratories to reach commercial applications to combat the main enemies of food”, these are some examples of what is being developed for the Packing industry:

Tetra Pak
The Swedish company Tetra Pak, leader in research and development in the packaging sector, through the European Graphene Flagship project, studies the use of Graphene for the manufacture of products with low environmental impact to reduce the carbon footprint, improve the performance of materials, add properties and optimize recyclability.

Applynano
The Spanish company Applynano uses nanomaterials, including graphene oxide, to promote the durability and recyclability of plastics, as well as to improve antimicrobial, thermal, and electrical properties, among others.


Plastic Technology Center (Andaltec)
The Technological Center of Plastic (Andaltec) within the European project Grafood, had the initiative to use derivatives of Graphene for the development of active packaging to increase the shelf life of food and reduce food waste.

Energeia – Graphenemex®
The Mexican company Energeia – Graphenemex®, through the polymer division Graphenergy Advanced Graphenic Solutions, promotes the use of Graphene and its derivatives as nano-reinforcement of plastic for different industries. Among the benefits it offers for the packing industry are mechanical resistance and resistance to degradation by UV radiation, greater barrier effect and interesting antimicrobial properties, highly promising for prolonging the life of products and their contents. Likewise, in addition to adding value to its developments with the multifunctional properties of Graphene and its derivatives, the company also aims to support other innovation projects with graphene nanotechnology, while seeking to collaborate with the circular economy to improve the quality of new and recycled plastic materials, to reduce the consumption of single-use products.

Evolution of the Graphene Industry in recent years in the world

Graphenergy

Evolution of the Graphene Industry in recent years in the world

Graphene is the most revolutionary nanomaterial of the 21st century and is considered the basic pillar for carbon nanochemistry, that is, the main element of all organic compounds.


Its versatility derives from its structure in the form of two-dimensional (2D) sheets, made up of carbon atoms linked in a hexagonal manner, and its importance lies in the extraordinary properties attributed to it and that have been conceived as the solution to innumerable social, environmental, scientific, technological and of course, economic needs.

Graphene sheet. High Resolution Transmission Electron Microscopy.
Energeia Collection – Graphenemex

Graphene allows matter to be modified to design compounds with new or improved characteristics, since it transfers its properties to the materials to which it is incorporated. This has allowed it to be used in the development of applications that seek to potentiate these properties, as shown in the following image.

Evolution – Graphene was first isolated in 2004 by Russian researchers Andre Geim and Konstantin Novoselov from the University of Manchester; subsequently, and thanks to their experiments, in 2010 they were awarded the Nobel Prize in Physics, as it was considered one of the most important discoveries of the century.


So important was the finding that in 2013 the European Union (EU) granted a budget of one billion euros to create the Graphene Flagship, an ambitious project valid for ten years with the aim of linking academia with industry, not only to understand its properties theoretically, but to fully exploit its benefits in real applications or products.


From that moment on, the progress of the investigations was so fast, and the expectations were higher and higher that, in 2017, the first edition of the ISO/TS 80004-13:2017 standard emerged (Ratified by the Spanish Association for Standardization in October 2020) for the normalization and standardization of Nanotechnology in new materials, including Graphene.


In the same 2020, a group of 70 researchers who are members of the Graphene Flagship, published the first manual with more than 500 pages on countless types of Graphene. By 2021, around 50 “spin-offs” and “startups” with different visions were registered within the organization, making the possibility of having a greater number of applications with Graphene or graphene materials at more affordable costs a reality by 2022.


In 2021 again the EU through the Federal Institute for Materials Research and Testing (BAM) with the new ISO-G-SCoPe project, set the objective of standardizing the methods to transfer Graphene to the industry, this as a result of the non-existence of production and quality standards, while, through the Versailles Project on Advanced Materials and Standards, under the direction of BAM, it seeks to validate the processes in a global test to convert them into standards.


Energeia Graphenemex® is the pioneer Mexican company in Latin America focused on the research and production of graphene materials for the development of applications at an industrial level. Among its strengths is the creation of patented methods and processes for replicable and large-scale production that ensures the availability of the appropriate graphene materials in accordance with the requirements of the applications it develops, either for its own products or as a strategic ally of other companies interested in innovating and improving their products with these materials.

Polymeric nanocomposites with graphene reinforcement

Graphenergy

Polymeric nanocomposites with graphene reinforcement

Mexico City – Thanks to the extraordinary properties, innumerable investigations and business promises around Graphene in the world, in 2021 its market was valued at 127.12 million dollars, forecasting an annual growth rate of more than 70% in the period from 2022 to 2027. However, 18 years after its isolation and despite the enormous competition from companies to develop applications with this nanomaterial, there are still relatively few products available on the market that contain it and take advantage of its benefits. This is mainly due to the investment and complexity for the transformation of graphite into graphene or in any of its variants (graphene oxide and reduced graphene oxide), the difficulty of producing it on an industrial scale to have it available as the fundamental raw material in the transformation of new compounds, as well as the need for scientific-industrial knowledge for the creation of efficient and economically viable applications.

The Mexican company Energeia Fusion S.A. de C.V., has focused on solving the most representative obstacles that Graphene has faced to reach the market, working hard on the creation and standardization of its own methods and processes that today allow it to optimize resources for product development. quality in a short time.

Polymeric nanocomposites with graphene oxide

The polymer division of the Graphenergy Advanced Graphenic Solutions line is part of a new line of highly effective nanotechnological additives for the plastics industry that, in addition to the added value represented by the multifunctional properties that graphene provides to polymers (mechanical strength, impermeability, resistance to UV radiation and/or antimicrobial activity), it also adds value for the circular economy, since it allows the use, reuse and recycling of plastic products, reducing the exploitation of natural resources and reducing the generation of waste, resulting in significant social, economic and environmental impacts.

What is the science of Graphene for reinforcing materials?

  1. Las fuertes interacciones entre la región interfacial de la matriz polimérica y las partículas nanométricas del grafeno son decisivas para mejorar las propiedades de los materiales,
  2. La correcta integración del grafeno con los materiales poliméricos mejora la organización en su estructura, haciendola más densa y compacta y por lo tanto mejora las propiedades mecánicas.
  3. Mejora las propiedades de barrera contra líquidos y gases, aumenta el tiempo de vida útil del producto y permite tener diversas propiedades en un solo material, como: conductividad, resistencia a la radiación ultravioleta, impermeabilidad, flexibilidad, ligereza, actividad antimicrobiana, etc.

“Las propiedades del Grafeno son tan numerosas como las variables asociadas, por eso es difícil definir una fórmula estándar que satisfaga todas sus expectativas. El reto está en encontrar el equilibrio entre sus propiedades”.

A continuación, se describen algunos de los innumerables efectos y potenciales usos de los materiales grafénicos sobre distintas matrices poliméricas:

Mechanical strength

Graphene materials cause changes in the viscoelastic behavior of polymers, showing greater resistance to elongation, an interesting property for the design of products that are more resistant to deformation, such as sealing products, cushioning, transport or tires, footwear, sports, etc. In addition to increasing the elastic modulus, it also improves the impact resistance of polymers in the range of 20 to 200%, with weight reductions of up to 35%, this property is of interest for the manufacture of lighter products with equal or greater resistance than conventional plastics, opening the possibility of reducing or substituting the use of metal parts for plastic parts for the automotive, construction, and security industries, among others.

Resistance to degradation

On the other hand, this nanomaterial has also shown other interesting contributions, for example, in accelerated weathering tests carried out on plastics reinforced with graphene and/or derivatives, it has been identified that the use of low concentrations can increase its resistance to extreme conditions up to 7 times. of humidity, temperature and ultraviolet radiation. Furthermore, if we consider that when plastic is exposed to UV radiation, it emits greenhouse gases (methane and ethylene). Therefore, by increasing the resistance to degradation, we could also favor the reduction of these emissions, without affecting the ability of PET to be reused or recycled, but, on the contrary, using graphene offers it more opportunities to be recycled.

Fire resistance

Another recognized property of graphene is that it is an excellent thermal conductor. In tests carried out on different polymers, those modified with graphene oxide, in addition to improving their mechanical properties, also improved flame retardancy. Being the polypropylene the most benefited when identifying a self-extinguishing behavior. This contribution is attractive for its application in electrical cable and wire coatings or plastic materials in general that require thermal resistance.

These are just some of the multiple properties that graphene and its derivatives can offer the plastics industry and all those who benefit from it and that, despite efforts to reduce the circulation of plastic due to environmental impacts, the advantages offered by graphene can be well focused to make the use, reuse and recycling of plastic more efficient.

Some of the plastic products with graphene that have been commercialized are described below:

  1. Energeia Fusion-Graphenemex through its polymer division develops Masterbatches with graphene oxide for the production of personal protection equipment such as face shields and non-woven fabrics for face masks. Likewise, it has developed modified polymers for hydraulic concrete and asphalt concrete, in addition to the Graphenergy line of coatings for anticorrosive and antimicrobial protection (Mexico),
  2. Directa Plus designed a face mask with graphene for the fight against the pandemic caused by SARS-COV2 (United Kingdom),
  3. The international wheel producer Vittoria developed the bicycle wheels called Qurano (Italy),
  4. Progress, with its Progress Atom LTD model, provides better performance in terms of wear resistance, greater grip, greater impermeability, more efficient heat dissipation and greater lateral rigidity, with less weight (Spain),
  5. Dassi Bikes built the world’s first bicycle made from graphene (UK),
  6. FiiO Electronics launched headphones with a graphene-enhanced diaphragm driver (China),
  7. NanoCase created smartphone cases for better heat dissipation (China),
  8. Catlike uses graphene to produce cycling helmets (Spain).

References

Nanotechnology applied in the tube marking process

Graphenergy construction

Nanotechnology applied in the tube marking process

Mexico City – Energeia Graphenemex® is a pioneering nanotechnology company in Latin America, dedicated to the research and production of graphene materials, as well as the development of applications at an industrial level.

Within the company’s research and development protocols, it seeks to solve problems faced by companies or industries on a daily basis, for which research agreements or alliances are made to seek to develop a solution in which graphene is become the agent of change.


Why we developed Graphenergy Ink?

In 2019 there was an approach with one of the largest companies in the world in the manufacture of steel tubes that was facing a serious problem in its process of marking the tubes, which were marketed.

During the tube manufacturing process, marking is necessary for rapid identification and traceability, optimizing all the processes and procedures that each of the steel tubes must go through. However, there was a problem: the ink used in the marking process erased very easily and did not withstand application temperatures above 70°C, in addition to having low resistance to abrasion.

In the course of manufacturing steel tubes, it is normal for these tubes to be subjected to different processes; rotation on conveyors, rollers, shot blasting and transport with cranes, where there is high friction and abrasion between tubes, so the ink ended up being torn off, erasing the marking on the metal surface, and thus losing all control and traceability of the tubes.< /p>

To offer a comprehensive solution to the marking problem, Energeia Graphenemex®, through its Graphenergy Anticorrosive line, developed a new white marking ink with graphene oxide.

Among the most important characteristics of this developed graphene oxide marking ink are:

  • Extraordinary thermal resistance (resists more than 200 °C)
  • Resistance to UV rays
  • Anticorrosive property
  • High adhesion to metallic substrates
  • Abrasion resistance
  • Ultra-fast drying (3 seconds)
  • Excellent covering power

Thermal resistance to extreme temperatures

Thanks to the development of the marking ink, the problem of the lack of adherence of the marking ink was solved, as well as the issue of abrasion that occurs when moving the tubes during transport, thus maintaining the traceability of the tubes .

Due to its characteristics, the production process was additionally benefited by:

  • Ultra-fast drying: it allowed the production line not to stop, which could improve production times
  • Anti-corrosion protection: a version of the transparent ink was formulated that is applied on the tubes after marking, preventing them from rusting.