Avanzando en la Durabilidad del Asfalto

Avanzando en la Durabilidad del Asfalto:

Aprovechando el Potencial del Grafeno para Carreteras Sostenibles

La mayor parte de la infraestructura vial en el mundo está conformada por pavimento compuesto por un sistema complejo de asfalto, agregados y aglutinantes que interactúan en una interfaz que mantiene su resistencia y estabilidad estructural. De acuerdo con el Asphalt Institute, anualmente se producen 87 millones de toneladas de asfalto en todo el mundo, de las cuales, alrededor del 85% se utiliza en la industria de pavimentación que, si bien ofrece una gran capacidad de carga y durabilidad, es inevitable que el asfalto se dañe por la exposición constante a radiación, temperatura, humedad y tráfico.

Por otro lado, el deterioro del asfalto no solo afecta a una infraestructura de transporte básica para el desarrollo socioeconómico de la población, sino que también involucra impactos ambientales en términos de agotamiento de recursos y altas emisiones de CO2 causadas por las obras viales. Estos factores se suman a las razones para la constante búsqueda de tecnologías de modificación que aumenten la durabilidad y mejoren las propiedades mecánicas de los pavimentos mediante el uso de fibras, caucho; aditivos como elastómeros termoplásticos, resinas plásticas y sintéticas, polvo de hierro, cal hidratada o desechos de vidrio. Sin embargo, en algunos casos, la aplicación de estos productos pueden presentar problemas prácticos como condiciones especiales de preparación, poca estabilidad de almacenamiento, dificultad para mezclar en construcción y complejidad para compatibilizar dichos componentes con el sistema asfáltico.

Afortunadamente, las nanoestructuras de carbono como el grafeno y óxido de grafeno (GO) vuelven a aparecer en escena como propuestas de soluciones para estas problemáticas a partir de interesantes aportaciones al asfalto en cuanto a rigidez, antienvejecimiento, resistencia a la deformación y penetración; reducción en la aparición de surcos, mejor consistencia y capacidad de transferencia de calor; resistencia al deslizamiento e incluso, reducción en el esfuerzo necesario para la compactación durante su preparación.

Además, entre las ventajas del grafeno está que puede mezclarse con otras tecnologías modificadoras de asfalto como el polietileno de baja densidad (LDPE), polietileno de alta densidad (HDPE), tereftalato de polietileno (PET), poliestireno (PS), caucho granulado, escoria de horno, resinas epóxicas y, sobre todo, con el estireno-butadieno-estireno (SBS), el cual es uno de los polímeros más aceptados en la industrial del asfalto y con el cual, el óxido de grafeno (GO) gracias a su contenido de oxígeno promueve la absorción de aromáticos y saturados del SBS con una importante mejora en la respuesta de temperatura, adherencia y rigidez en el ligante.

Algunos de los métodos identificados que prometen simplificar la incorporación del grafeno en las mezclas asfálticas son:  

  1. Método de adición directa: el grafeno es incorporado al ligante asfáltico previamente fundido.  
  2. Método de adición indirecta: el grafeno y el aglutinante asfáltico se disuelven simultáneamente en una solución media para posteriormente formar una solución uniforme.
  3. Método de adición auxiliar: el grafeno se modifica químicamente con grupos funcionales o se adiciona en conjunto con otros agentes modificadores para posteriormente fundirse en el aglutinante asfáltico.

Aunque hasta el momento son pocas las empresas que han explorado al grafeno como aditivo mejorador del asfalto, la amplia investigación realizada a lo largo de la última década está ayudando a sentar las bases para comprender y proyectar el potencial de esta tecnología en beneficio de la industria de la pavimentación. Incluso, el pasado mes de febrero de 2024, la revista Infraestructures publicó los resultados del proyecto ECOPAVE fundado por la Unión Europea, el cual consistió en una prueba en campo con 5 años de duración realizada a lo largo de 1 km de tráfico pesado al sur de Roma, Italia. Para el estudio se colocaron cuatro secciones de pavimento asfáltico con y sin adiciones de polímeros modificados con grafeno. Transcurridos los 5 años de evaluación los investigadores reafirmaron el potencial del asfalto modificado con el polímero de grafeno como tecnología innovadora y factible para la pavimentación de carreteras de alto tráfico, gracias a que demostró valores de rigidez más altos a diferentes temperaturas, mejor comportamiento a la fatiga y mayor resistencia a la deformación que, en conjunto prometen una mayor vida útil, con una reducción importante en los gastos de mantenimiento.

En Energeia- Graphenemex® como líderes en el desarrollo de aplicaciones con grafeno tenemos la firme convicción de que, aunque aún hay trabajo por realizar, falta muy poco para poder disfrutar de los beneficios económicos y ambientales que esta maravillosa tecnología puede aportar no solo a nuestras calles y carreteras, sino a la sociedad.

Redacción: EF/DHS

Referencias

  1. Mechanism and Performance of Graphene Modified Asphalt: An Experimental Approach Combined with Molecular Dynamic Simulations. Case Studies in Construction Materials. 2023, 18, e01749;
  2. Properties and Characterization Techniques of Graphene Modified Asphalt Binders. Nanomaterials 2023, 13, 955;
  3. Analysis on the road performance of graphene composite rubber asphalt and its mixture. Case Studies in Construction Materials. 2022, 17, e01664;
  4. A complete study on an asphalt concrete modified with Graphene and recycled hard-plastics: A case study. Case Studies in Construction Materials. 2022, 17, e01437;
  5. Effect of Graphene Oxide on Aging Properties of polyurethane-SBS Modified Asphalt and Asphalt Mixture. Polymers 2022, 14, 3496;
  6. Mechanical Characteristics of Graphene Nanoplatelets-Modified Asphalt Mixes: A Comparison with Polymer- and Not-Modified Asphalt Mixes. Materials 2021, 14, 2434;
  7. Impact of Graphene Oxide on Zero Shear Viscosity, Fatigue Life and Low-Temperature Properties of Asphalt Binder. Materials 2021, 14, 3073;
  8. Experimental Investigation into the Structural and Functional Performance of Graphene Nano-Platelet (GNP)-Doped Asphalt. Appl. Sci. 2019, 9, 686;
  9. Modified Asphalt with Graphene-Enhanced Polymeric Compound: A Case Study. Infrastructures 2024, 9, 39.

Optimización de Compuestos de Fibra de Vidrio y de Carbono

Optimización de Compuestos de Fibra de Vidrio y de Carbono:

Mejorando Propiedades con Nanopartículas de Grafeno

Las fibras de vidrio y de carbono gracias a sus excelentes propiedades son ampliamente utilizados en industrias como la aeroespacial, marítima, automotriz, deportiva, construcción e incluso para la fabricación de componentes fundamentales de energías renovables como la eólica. Sin embargo, pese a su excelente desempeño, son compuestos que suelen presentar un fenómeno conocido como “delaminación interlaminar” derivada de una débil interacción interfacial fibra/resina que puede comprometer la vida útil y seguridad del producto debido a su importante participación en la transferencia de tensión entre ambos elementos. Al ser esta interacción clave para el éxito a largo plazo de las estructuras compuestas, se han explorado diversas alternativas de mejora como la fijación en Z, cosido y trenzado; aumento del área superficial y la reactividad de las fibras por medio de modificaciones superficiales como el tratamiento con plasma, modificación térmica o funcionalización química que, evidentemente son procesos complejos, costosos y no siempre eficientes que, además, tienden a reducir el rendimiento del laminado en el plano.

“Como estrategia adicional y de relativamente reciente aparición, se propuso la incorporación de nanopartículas al material compuesto por fibras buscando favorecer la interacción con la matriz en la que se embeben”.

El Grafeno, el nanomaterial conocido como la piedra angular de la familia del carbono y que desde su aislamiento ha resaltado calificativos como “el material del futuro” o “el material milagro”, es un atractivo candidato como nano refuerzo de incontables compuestos poliméricos gracias a su estructura plana grafitizada única, que da lugar a mejores propiedades mecánicas, térmicas, entre otras que, a diferencia de otras nanopartículas como los nanotubos de carbono (CNT, por sus siglas en inglés), no suele aumentar de manera relevante la viscosidad de las resinas y por lo tanto, permite incorporar concentraciones más altas favoreciendo la tan mencionada interacción fibra/matriz.

Las investigaciones sobre los efectos del grafeno para el diseño de materiales híbridos a base de fibras (vidrio/carbono) embebidas en una matriz polimérica comúnmente de naturaleza epóxica, han destacado mayor rigidez de los compuestos, mejoras en resistencia a la fractura, mejor lubricación e incluso mejor conductividad eléctrica. Esto se debe a que su gran superficie de área permite una transmisión de carga efectiva desde la matriz blanda del polímero a las láminas de grafeno que son relativamente más rígidas, lo cual es un requisito esencial para mejorar el rendimiento mecánico, ratificado por una mayor resistencia al corte interlaminar del material, mayor resistencia a la tracción y al impacto. Además, durante la manipulación y corte de las estructuras híbridas de fibra, la presencia del grafeno contribuye a generar menos calor durante el fresado, conduce a temperaturas de corte más bajas y menor rugosidad en la superficie; asimismo, otro de los beneficios es que el grafeno produce mayor efecto endurecedor y mejor resistencia a la flexión del material expuesto a distintas temperaturas con registros desde los 40 °C hasta los 200 °C.

En Energeia- Grapenemex la empresa líder en América latina en la producción de materiales grafénicos y en el desarrollo de aplicaciones, estamos convencidos de que las extraordinarias capacidades del grafeno como nanorefuerzo de incontables matrices tridimensionales continuarán alentando a investigadores y colegas industriales a explorar sus beneficios para la fabricación de componentes estructurales más resistentes y ligeros de aeronaves como fuselaje y alas; autopartes y carrocerías aerodinámicas de automóviles; aerogeneradores, equipos deportivos, materiales de construcción, entre otros. 

La imagen inferior evidencia la buena interacción fibra/matriz promovida por la presencia del grafeno 5.

Redacción: EF/DH

Referencias:

  1. Effect of dispersion of alumina nanoparticles and graphene nanoplatelets on microstructural and mechanical characteristics of hybrid carbon/glass fibers reinforced polymer composite. Journal of material research and technology. 2021, 14, 2624;
  2. Experimental investigation on the properties of glass fiber-reinforced polymer composites containing Graphene. AIP Conf. Proc. 2022, 2405, 050009;
  3. Reinforcement effect of graphene oxide in glass fibre/epoxy composites at in-situ elevated temperature environments: An emphasis on graphene oxide content. Composites part A: Applied science and manufacturing. 2017, 95, 40;
  4. Preparation and Mechanical Properties of Graphene/Carbon Fiber-Reinforced Hierarchical Polymer Composites. J. compos sci. 2019, 3, 30;
  5. Improving fiber/matrix interfacial strength through graphene and graphene-oxide nano platelets. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 139, 012004;
  6. Effect of Graphene on Machinability of Glass Fiber Reinforced Polymer (GFRP). J. Manuf. Mater. Process. 2019, 3, 78;
  7. Size effect of graphene nanoplatelets on the morphology and mechanical behavior of glass fiber/epoxy composites. J Mater Sci. 2016, 51, 3337.

Explotando el potencial del grafeno:

Explotando el potencial del grafeno:

mejorando recubrimientos con nanotecnología para incrementar su resistencia a la intemperie

Los recubrimientos están diseñados con fines decorativos y para la protección de superficies, especialmente para la protección contra la corrosión y humedad.  En un sistema de recubrimientos (multicapa), la capa superior o de acabado, desempeña un papel crucial, ya que debe proporcionar un buen aspecto y proteger las capas interiores y el sustrato contra factores ambientales como la luz solar, la humedad, corrosión y resistencia a productos químicos, ensuciamiento, etc. durante su vida útil.

Hoy en día, el Poliuretano (PU) se considera uno de los recubrimientos como mejores características físicas-químicas para aplicaciones de recubrimiento de acabado y por su resistencia a la intemperie. Sin embargo, su resistencia a la intemperie va disminuyendo con la exposición a la luz ultravioleta durante largos periodos de tiempo.

La luz solar es una de las principales causas de daño a recubrimientos. Los daños van desde la perdida de propiedades físicas, desintegración en polvo (caleo), resquebrajamiento, descascarillado, decoloración y cambio de color, como resultado de la fotodegradación química, migración, evaporación e interacción de otros componentes con el recubrimiento.

En los últimos años, se han implementado diversos materiales nanoestructurados, como el titanio, el óxido de zinc, cerio y el óxido de hierro, para mejorar la resistencia a la intemperie de los recubrimientos poliméricos. El mecanismo se basa en su efecto de proyección (tanto de absorción como de dispersión) de los rayos incidentes en la región UV. Estos materiales pueden estabilizar los recubrimientos frente a la exposición exterior, poseen una actividad fotocatalítica que pueden destruir el material aglutinante orgánico presente en los recubrimientos, lo que lleva a modificar la superficie de estos materiales nanoestructurados para eliminar o inhibir su actividad fotocatalítica, lo que requiere más procesos, tiempo y dinero.

Recientemente el grafeno ha atraído mucha atención, como nuevo aditivo y material para la producción de recubrimientos para la mejora de propiedades anticorrosivas, antimicrobianas y con mayor resistencia a la intemperie, debido a su estructura electrónica especial que le brinda propiedades eléctricas, mecánicas y químicas únicas. El grafeno, es un nanomaterial que está formado por una o varias capas de carbono (formadas por átomos de carbono enlazados de manera hexagonal y un espesor de un átomo de carbono). Esta estructura hace que los materiales basados en grafeno sean capaces de absorber fotones en la región UV. Esta capacidad de absorción en la región UV, así como la ausencia de actividad fotocatalítica de los materiales grafénicos, permite introducir estos materiales como nuevos aditivos para la fotoestabilización de los recubrimientos poliméricos, es decir con mayor.

Actualmente Energeia – Graphenemex®, está en constante desarrollado de recubrimientos nanotecnológicos con mejores propiedades. A realizado estudios sobre la influencia del óxido de grafeno en el comportamiento a la intemperie de los recubrimientos de PU. Para evaluar el desempeño del óxido de grafeno, se comparó un recubrimiento de PU con óxido de grafeno (PU/GO) con un recubrimiento PU que contenía un absorbente UV orgánico comercial (PU/control).

El cambio de color en un recubrimiento durante la exposición a la intemperie (luz solar) es el parámetro más importante y rápido para evaluar visualmente la degradación de un recubrimiento. Para evaluar, el cambio de color se introdujeron muestras recubiertas de Poliuretano con y sin material grafenico, a una cámara de intemperismo acelerado (basado en la ASTM G154). De acuerdo con la norma, se empleó una cámara de intemperismo QUV modelo QUV/se para acelerar las condiciones de intemperismo. Las muestras recubiertas se expusieron cíclicamente a radiación UVA (energía 0,89 W/m2) durante 8 h, seguidas de una condensación de humedad durante 4 h a 50 °C. Se evaluó el color de los recubrimientos antes de la exposición para comparar su color inicial, y posteriormente se fue evaluando a diferente tiempo de exposición, esta evaluación se realizó hasta un llegar a tiempo de exposición de 1200 h.

El principal componente del color que suele tenerse en cuenta en el comportamiento a la intemperie es el cambio de color total o Delta E (DE). La Fig. 1, muestra la ΔE, como criterio más exhaustivo de los cambios de color, que es la suma de los cambios en todos los componentes del color.

Como puede observarse, la mayor parte de las variaciones de color a lo largo de todo el tiempo de exposición pertenecen al recubrimiento de PU/control. La muestra que contiene óxido de grafeno (PU/GO) a las 251 h del tiempo de exposición presenta un menor cambio de color en comparación al PU/control. Con el incremento del tiempo de exposición en la cámara de intemperismo, se puede apreciar que hay variaciones de color, pero la muestra con oxido de grafeno, sigue mostrando menores cambios de color, lo que es un indicativo que la incorporación de GO en el Poliuretano brinda más resistencia y mantiene su estabilidad durante más tiempo de exposición a la intemperie.

Fig 1. Cambio de color total (ΔE) frente al tiempo de exposición para recubrimientos de Poliuretano con óxido de grafeno (PU/GO) y sin oxido de grafeno (PU/control) durante a la prueba de intemperismo acelerado.

Desde un punto de vista físico, el óxido de grafeno (GO) tiene una mayor transmitancia en la región visible en comparación al grafeno, lo que resulta más favorable para su uso como protector UV en los recubrimientos de acabado. Por otro lado, gracias a la elevada área superficial de los materiales grafénicos, estos también pueden proveer excelentes propiedades efecto-barrera y con ello desarrollo recubrimientos anticorrosivos y con mayor resistencia a la intemperie.

Energeia – Graphenemex®, a través de su línea Graphenergy, tiene a la venta una amplia gama de recubrimientos nanotecnológicos con grafeno. Estos recubrimientos ofrecen alta protección anticorrosiva y antimicrobiana. Además, de brindar alta resistencia al desgaste, resistencia a los rayos UV, impermeabilidad y una extraordinaria adherencia, con la finalidad de mejorar la vida de útil de cualquier superficie o instalación y reducir los costos de mantenimiento.

Referencias

  1. G. Wang, X. Shen, B. Wang, J. Yao, J. Park, Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets, Carbon N. Y. 47 (no. 5) (2009) 1359–1364.
  2. B. Ramezanzadeh, M. Mohseni, H. Yari, S. Sabbaghian, A study of thermal-mechanical properties of an automotive coating exposed to natural and simulated bird droppings, J. Therm. Anal. Calorim. 102 (no. 1) (2010).
  3. N. Rajagopalan, A.S. Khanna, Effect of Methyltrimethoxy Silane Modification on Yellowing of Epoxy Coating on UV (B) Exposure vol. 2014, (2014).
  4. M. Hasani, M. Mahdavian, H. Yari⁎, B. Ramezanzadeh. Versatile protection of exterior coatings by the aid of graphene oxide nanosheets; comparison with conventional UV absorbers. 2017.
  5. S.M. Mirabedini, M. Sabzi, J. Zohuriaan-Mehr, M. Atai, M. Behzadnasab,
  6. Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles, Appl. Surf. Sci. 257 (no. 9) (2011) 4196–4203.
  7. N.S. Allen, M. Edge, A. Ortega, C.M. Liauw, J. Stratton, R.B. McIntyre, Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings, Polym. Degrad. Stab. 78 (no. 3) (2002) 467–478.
  8. Effect of Silane Modified Nano ZnO on UV Degradation of Polyurethane Coatings. vol. 79, (2015), pp. 68–74.
  9. M. Rashvand, Z. Ranjbar, S. Rastegar, Nano zinc oxide as a UV-stabilizer for aromatic polyurethane coatings, Prog. Org. Coatings 71 (4) (Aug. 2011) 362–368.

Graphenemex: Impulsando la Innovación Global en Grafeno

La invitación a participar en la convención llegó a Graphenemex gracias a la Universidad Americana de Sharjah y su colaborador comercial, World Direct Tech, patrocinador del evento. La convención se centró en intercambiar los últimos avances en ciencia e ingeniería de materiales, promoviendo colaboraciones regionales e internacionales entre académicos, el gobierno y la industria.

Ver artículo completo >

Graphenemex y World Direct Tech brillan en una conferencia sobre ciencia de materiales

La alianza entre Graphenemex, representada por su CEO Eduardo Priego Mondragón, y World Direct Tech, encabezada por su CEO Paulo Armas, fue el centro de atención en el Congreso Internacional sobre Fronteras en Ciencia e Ingeniería de Materiales (FMSE), organizado por la Universidad Americana de Sharjah (AUS) en Emiratos Árabes Unidos los días 14 y 15 de febrero de 2024. Graphenemex fue la única empresa latinoamericana invitada a este evento, siendo líder en el campo de la Nanotecnología.

Ver artículo completo >

¡Orgullo mexicano! Graphenemex y World Direct Tech destacan en conferencia sobre ciencia de materiales

Durante el evento, Eduardo Priego Mondragón presentó dos ponencias tituladas «Innovación en la Construcción: Óxido de grafeno, el nano aditivo diferenciador para el concreto» y «Revolución en Recubrimientos: Potenciando la Industria de la Construcción mediante el uso de Recubrimientos con Grafeno».

Ver artículo completo >

WDT, con sede en Atlanta, acoge a Graphenemex en el Congreso Internacional FMSE en Dubai

La Universidad Americana de Sharjah (AUS), Emiratos Árabes Unidos, se está preparando para albergar el Congreso Internacional de la Frontera en Ciencia e Ingeniería de Materiales (FMSE) del 13 al 15 de febrero de 2024.

La colaboración entre la Universidad Americana de Sharjah, World Direct Tech y Energeia-Graphenemex tiene como objetivo mostrar los avances en América Latina en el desarrollo de productos nanotecnológicos para la industria de la construcción.

Ver artículo completo >

Innovaciones Textiles II

Innovaciones Textiles:

Explorando las Tendencias del Grafeno en la Industria

Parte II

En el artículo anterior sobre Innovaciones textiles se abordaron las tendencias del grafeno en la industria enfocadas en aplicaciones prácticas aprovechando sus propiedades eléctricas, térmicas, resistencia al fuego y mecánicas sobre textiles; a continuación se describirán las ventajas del grafeno tomando en consideración el resto de sus beneficios multifuncionales como el efecto barrera con enfoque impermeable y antimicrobiano, así como sus aportaciones en cuanto a protección contra la radiación Uv y confort.

Resistencia mecánica.

La alta resistencia mecánica del grafeno es ampliamente conocida, con un módulo de Young de ~1100 Gpa y una tensión mecánica a la rotura de 42 N/m, por lo que una sola capa de grafeno es 200 veces más resistente que el acero en igualdad de espesor. Esta fuerza se puede utilizar en compuestos modificados con grafeno, de tal manera que puedan soportar grandes esfuerzos sin deformarse y obteniendo mayor resistencia con menor calibre.

En tejidos de lana se ha encontrado una excelente linealidad con más del 20% de alargamiento, resistencia a la humedad del 30 al 90% y buenas propiedades eléctricas y mecánicas. En fibras producidas con un 25% de contenido de lana, la modificación con un compuesto grafénico exhibió una mayor resistencia mecánica (~ 327 MPa) con reducciones en su diámetro de hasta ~ 70% (~ 30 a ~ 20 µm), en comparación con otras fibras como púas de plumas (~ 161 MPa), fibras de queratina (~ 138 MPa), fibras de lana (~ 173 MPa), fibras compuestas de alpaca / PAN (~ 297 MPa) y fibras de viscosa (~ 276 MPa), reportadas en la literatura. Estos cambios pueden explicarse por el efecto del compuesto grafénico sobre la reducción de los defectos en la superficie interna de la fibra y en su contribución para mejorar la orientación molecular de la cadena polimérica de la fibra. 

Propiedades de barrera

La naturaleza hidrofóbica del grafeno, el tamaño de sus nanocanales y la elevada densidad de electrones sobre su superficie lo vuelve una estructura altamente impermeable a materia particulada, líquidos y gases. Por otro lado, la manera que tienen los compuestos grafénicos de interactuar con otros materiales y de organizar a nivel molecular la estructura tridimensional de los mismos, permite crear compuestos con arquitecturas más densas y organizadas a nivel molecular disminuyendo la porosidad de los materiales y creando compuestos además de impermeables, también más resistentes mecánicamente y con importantes índices de recuperación o de resistencia a la deformación.

Barrera antimicrobiana

Otra ventaja del uso del grafeno en la industria textil es su capacidad antimicrobiana, considerando la persistencia y aparición de nuevos retos como el riesgo que conlleva el anclaje, proliferación y propagación de microorganismos sobre las prendas utilizadas particularmente por el sector médico.

Mecanismos de barrera antimicrobiana

– Exclusión por tamaño. El tamaño de los microorganismos puede variar desde los 10 nm hasta 3 micrómetros, por lo tanto, no logran permear a través de la barrera que provee la distancia interatómica de átomos de carbono de las láminas del grafeno (0.142 nm- 0.9 nm).

– Estrés oxidativo. Las interacciones entre los extremos polares de los fosfolípidos de las membranas celulares con el grafeno generan estrés oxidativo irreversible y muerte microbiana. Además, su gran capacidad de anclaje a proteínas puede inhibir la capacidad enzimática de algunos microorganismos.

– Daño a la membrana. Los bordes cortantes de las láminas del grafeno dañan físicamente la estructura de los microorganismos, evitando la adherencia microbiana a las superficies, pero sin tener efectos adversos sobre la piel.

Protección UV.

El espectro de absorción del grafeno abarca todo el espectro electromagnético, con un pico de absorción alrededor de 281 nm, por lo que puede absorber radiación UV con una longitud de onda comprendida entre 100 y 281 nm. Para longitudes mayores a 281 nm, la reflexión que provee el grafeno juega un papel importante en cuanto a la resistencia a la radiación UV y por lo tanto a la mayor durabilidad de los materiales, sobre todo aquellos expuestos a la intemperie.

Confort

Textiles como el algodón, el lino o las telas de seda, son altamente hidrófilas, pero tienen poca capacidad de transporte de moléculas de agua, es decir, pueden absorber la humedad del vapor y la transpiración líquida, pero no pueden desorber el agua hacia la superficie exterior, por lo tanto, el agua retenida en la tela hará que las telas estén húmedas o pegajosas siendo incómodo para el usuario; la hidrofobicidad de los compuestos grafénicos repele o evita el transporte de agua hacia la capa interior y a la vez transporta el agua inversamente a su superficie exterior, además, su excelente capacidad de regulación térmica evita que el calor y la humedad se concentre, evitando que se genere un ambiente propicio para la proliferación de microorganismos como hongos, bacterias virus, ácaros, y por lo tanto infecciones, manchas y malos olores.    

En Energeia- Graphenemex® como líderes en América latina en la producción y desarrollo de aplicaciones con grafeno, estamos convencidos del gran potencial de este maravilloso material para atender las necesidades de sectores industriales como la industria textil. Asimismo, estamos sensibilizados sobre las necesidades científicas, técnicas, económicas y éticas que cada proyecto involucra para su materialización en un producto diferenciado. Por esta razón, somos un aliado estratégico para otras compañías interesadas en innovar y mejorar sus productos y/o procesos a partir de la conformación de equipos multidisciplinarios que allanen el camino para la introducción de nuevas tecnologías como el grafeno en el mercado. Esperamos tener pronto los primeros textiles con grafeno en México.

Redacción: EF/DHS

Referencias

  1. Graphene Modified Multifunctional Personal Protective Clothing. Adv. Mater. Interfaces 2019, 6, 1900622;
  2. Graphene-based fabrics and their applications: a review. RSC Advances. 2016, 6:68261;
  3. Fabrication of a graphene coated nonwoven textile for industrial applications. Australian Institute for Innovative Materials – Papers. 2016, 2173;
  4. New Perspectives on Graphene/ Polymer Fibers and Fabrics for Smart Textiles: The Relevance of the Polymer/Graphene Interphase. Front. Mater. 2018, 5:18;
  5. Graphene applied textile materials for wearable e-textile. 5 th International Istanbul Textile Congress 2015: Innovative Technologies Inspire to Innovate‖ September 11th -12th 2015 Istanbul, Turkey;
  6. The Effect of Graphene Oxide on Flame Retardancy of Polypropylene and Polystyrene. Materials Performance and Characterization 2020, 9, 1, 284;
  7. Engineering Graphene Flakes for Wearable Textile Sensors via Highly Scalable and Ultrafast Yarn Dyeing Technique. ACS Nano 2019, 13, 4, 3847;
  8. Highly Conductive, Scalable, and Machine Washable Graphene-Based E-Textiles for Multifunctional Wearable Electronic Applications. Adv. Funct. Mater. 2020, 30, 2000293;
  9. Moisture- Resilient graphene – dyed wool fabric for strain sensing. ACS App. Mater. Interfaces. 2020, 12, 11,13265;
  10. Creating Smart and Functional Textile Materials with Graphene. Nanomaterials and Nanotechnology Biomedical, Environmental, and Industrial Applications. 2021, Chapter 13.;
  11. Graphene oxide incorporated waste wool/PAN hybrid fibres. Sci Rep 2021, 11, 12068;
  12. Moisture-Resilient Graphene-Dyed Wool Fabric for Strain Sensing. ACS Applied Materials & Interfaces 2020, 12, 11, 13265;
  13. Thermal Degradation and Flame-Retardant Mechanism of the Rigid Polyurethane Foam Including Functionalized Graphene Oxide. Polymers 2019, 11, 78;
  14. Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide. App Acoustics. 151, 2019, 10;
  15. Intumescent flame-retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. Journal of Materials Science. 2014, 49, 243;
  16. Production and characterization of Graphene Nanoplatelet-based ink for smart textile strain sensors via screen printing technique. Materials & Design. 198, 15 2021, 109306;
  17. Caracterización de un tejido mezcla poliéster/ algodón aplicando grafeno mediante el proceso de adsorción. Tesis 2020;
  18. Síntesis y formulación de nuevas espumas de poliuretano flexibles con propiedades mejoradas. Tesis 2018.