Polymeric nanocomposites with graphene reinforcement


Polymeric nanocomposites with graphene reinforcement

Mexico City – Thanks to the extraordinary properties, innumerable investigations and business promises around Graphene in the world, in 2021 its market was valued at 127.12 million dollars, forecasting an annual growth rate of more than 70% in the period from 2022 to 2027. However, 18 years after its isolation and despite the enormous competition from companies to develop applications with this nanomaterial, there are still relatively few products available on the market that contain it and take advantage of its benefits. This is mainly due to the investment and complexity for the transformation of graphite into graphene or in any of its variants (graphene oxide and reduced graphene oxide), the difficulty of producing it on an industrial scale to have it available as the fundamental raw material in the transformation of new compounds, as well as the need for scientific-industrial knowledge for the creation of efficient and economically viable applications.

The Mexican company Energeia Fusion S.A. de C.V., has focused on solving the most representative obstacles that Graphene has faced to reach the market, working hard on the creation and standardization of its own methods and processes that today allow it to optimize resources for product development. quality in a short time.

Polymeric nanocomposites with graphene oxide

The polymer division of the Graphenergy Advanced Graphenic Solutions line is part of a new line of highly effective nanotechnological additives for the plastics industry that, in addition to the added value represented by the multifunctional properties that graphene provides to polymers (mechanical strength, impermeability, resistance to UV radiation and/or antimicrobial activity), it also adds value for the circular economy, since it allows the use, reuse and recycling of plastic products, reducing the exploitation of natural resources and reducing the generation of waste, resulting in significant social, economic and environmental impacts.

What is the science of Graphene for reinforcing materials?

  1. Las fuertes interacciones entre la región interfacial de la matriz polimérica y las partículas nanométricas del grafeno son decisivas para mejorar las propiedades de los materiales,
  2. La correcta integración del grafeno con los materiales poliméricos mejora la organización en su estructura, haciendola más densa y compacta y por lo tanto mejora las propiedades mecánicas.
  3. Mejora las propiedades de barrera contra líquidos y gases, aumenta el tiempo de vida útil del producto y permite tener diversas propiedades en un solo material, como: conductividad, resistencia a la radiación ultravioleta, impermeabilidad, flexibilidad, ligereza, actividad antimicrobiana, etc.

“Las propiedades del Grafeno son tan numerosas como las variables asociadas, por eso es difícil definir una fórmula estándar que satisfaga todas sus expectativas. El reto está en encontrar el equilibrio entre sus propiedades”.

A continuación, se describen algunos de los innumerables efectos y potenciales usos de los materiales grafénicos sobre distintas matrices poliméricas:

Mechanical strength

Graphene materials cause changes in the viscoelastic behavior of polymers, showing greater resistance to elongation, an interesting property for the design of products that are more resistant to deformation, such as sealing products, cushioning, transport or tires, footwear, sports, etc. In addition to increasing the elastic modulus, it also improves the impact resistance of polymers in the range of 20 to 200%, with weight reductions of up to 35%, this property is of interest for the manufacture of lighter products with equal or greater resistance than conventional plastics, opening the possibility of reducing or substituting the use of metal parts for plastic parts for the automotive, construction, and security industries, among others.

Resistance to degradation

On the other hand, this nanomaterial has also shown other interesting contributions, for example, in accelerated weathering tests carried out on plastics reinforced with graphene and/or derivatives, it has been identified that the use of low concentrations can increase its resistance to extreme conditions up to 7 times. of humidity, temperature and ultraviolet radiation. Furthermore, if we consider that when plastic is exposed to UV radiation, it emits greenhouse gases (methane and ethylene). Therefore, by increasing the resistance to degradation, we could also favor the reduction of these emissions, without affecting the ability of PET to be reused or recycled, but, on the contrary, using graphene offers it more opportunities to be recycled.

Fire resistance

Another recognized property of graphene is that it is an excellent thermal conductor. In tests carried out on different polymers, those modified with graphene oxide, in addition to improving their mechanical properties, also improved flame retardancy. Being the polypropylene the most benefited when identifying a self-extinguishing behavior. This contribution is attractive for its application in electrical cable and wire coatings or plastic materials in general that require thermal resistance.

These are just some of the multiple properties that graphene and its derivatives can offer the plastics industry and all those who benefit from it and that, despite efforts to reduce the circulation of plastic due to environmental impacts, the advantages offered by graphene can be well focused to make the use, reuse and recycling of plastic more efficient.

Some of the plastic products with graphene that have been commercialized are described below:

  1. Energeia Fusion-Graphenemex through its polymer division develops Masterbatches with graphene oxide for the production of personal protection equipment such as face shields and non-woven fabrics for face masks. Likewise, it has developed modified polymers for hydraulic concrete and asphalt concrete, in addition to the Graphenergy line of coatings for anticorrosive and antimicrobial protection (Mexico),
  2. Directa Plus designed a face mask with graphene for the fight against the pandemic caused by SARS-COV2 (United Kingdom),
  3. The international wheel producer Vittoria developed the bicycle wheels called Qurano (Italy),
  4. Progress, with its Progress Atom LTD model, provides better performance in terms of wear resistance, greater grip, greater impermeability, more efficient heat dissipation and greater lateral rigidity, with less weight (Spain),
  5. Dassi Bikes built the world’s first bicycle made from graphene (UK),
  6. FiiO Electronics launched headphones with a graphene-enhanced diaphragm driver (China),
  7. NanoCase created smartphone cases for better heat dissipation (China),
  8. Catlike uses graphene to produce cycling helmets (Spain).


Nanotechnology applied in the tube marking process

Graphenergy construction

Nanotechnology applied in the tube marking process

Mexico City – Energeia Graphenemex® is a pioneering nanotechnology company in Latin America, dedicated to the research and production of graphene materials, as well as the development of applications at an industrial level.

Within the company’s research and development protocols, it seeks to solve problems faced by companies or industries on a daily basis, for which research agreements or alliances are made to seek to develop a solution in which graphene is become the agent of change.

Why we developed Graphenergy Ink?

In 2019 there was an approach with one of the largest companies in the world in the manufacture of steel tubes that was facing a serious problem in its process of marking the tubes, which were marketed.

During the tube manufacturing process, marking is necessary for rapid identification and traceability, optimizing all the processes and procedures that each of the steel tubes must go through. However, there was a problem: the ink used in the marking process erased very easily and did not withstand application temperatures above 70°C, in addition to having low resistance to abrasion.

In the course of manufacturing steel tubes, it is normal for these tubes to be subjected to different processes; rotation on conveyors, rollers, shot blasting and transport with cranes, where there is high friction and abrasion between tubes, so the ink ended up being torn off, erasing the marking on the metal surface, and thus losing all control and traceability of the tubes.< /p>

To offer a comprehensive solution to the marking problem, Energeia Graphenemex®, through its Graphenergy Anticorrosive line, developed a new white marking ink with graphene oxide.

Among the most important characteristics of this developed graphene oxide marking ink are:

  • Extraordinary thermal resistance (resists more than 200 °C)
  • Resistance to UV rays
  • Anticorrosive property
  • High adhesion to metallic substrates
  • Abrasion resistance
  • Ultra-fast drying (3 seconds)
  • Excellent covering power

Thermal resistance to extreme temperatures

Thanks to the development of the marking ink, the problem of the lack of adherence of the marking ink was solved, as well as the issue of abrasion that occurs when moving the tubes during transport, thus maintaining the traceability of the tubes .

Due to its characteristics, the production process was additionally benefited by:

  • Ultra-fast drying: it allowed the production line not to stop, which could improve production times
  • Anti-corrosion protection: a version of the transparent ink was formulated that is applied on the tubes after marking, preventing them from rusting.

Nanotechnological additive for concrete with graphene oxide

Graphenergy Construction

Nanotechnological additive for concrete with graphene oxide

Mexico City – 9 years after being established, Energeia Fusion S.A. de C.V., the most important Mexican company in Latin America and promoter of the renowned Graphenemex® brand, launches the Graphenergy construction line, a new generation of nanotechnological additives for concrete with graphene oxide, which promises to strengthen the infrastructure and construction industry .

El Grafeno, también conocido como “el material del futuro”, finalmente traspasó la barrera de los laboratorios de investigación y se ha convertido en una realidad como potencial solución de innumerables necesidades sociales, ambientales e industriales. Este maravilloso nanomaterial consiste láminas atómicas de carbono extraídas del grafito y, gracias a sus interesantes propiedades mecánicas, eléctricas, térmicas, ópticas, etc., durante los últimos años se han invertido millones de dólares alrededor del mundo para tenerlo disponible en distintas aplicaciones, dentro de las cuales, la industria de la infraestructura y construcción ha logrado ser una de las más favorecidas.

Graphene career in the construction industry

2004 – Isolation of Graphene.

2010 – Recognition of the scientists Konstantin Novoselov and Andre Geim with the Nobel Prize in Physics for the isolation of Graphene.

2013 – Energeia Graphenemex is established, the first company in Latin America specialized in the production of graphene materials and development of applications.

2018 – Graphenemex® launches Nanocreto® on the market, the first additive for concrete with graphene oxide in the world (Mexico).

2019 – Graphenenano launches Smart additives, additives with graphene for concrete (Spain).

2019 – GrapheneCA presents its line of OG concrete admix products for the industry

concrete (USA).

2021- Scientists from the University of Manchester develop the concrete admixture Concretene (England).

2022 – Energeia – Graphenemex® launches the Graphenergy Construction line, a

improved version of its concrete admixture (Mexico).

Graphenergy construction is a water-based admixture compatible with other admixtures, designed to improve the quality of concrete or concrete, with the aim of reinforcing the pre-existing characteristics of concrete, such as mechanical resistance, but also to add value by providing non-existent properties in the original design, such as waterproofing, thermal insulation and antimicrobial protection.

How does Graphenergy construction work?

1. High impermeability and anti-corrosiveness

Graphenergy construction within the cementitious matrix forms molecularly more ordered and closed architectures that reduce the porosity of the structure and therefore create hydrophobic surfaces that, at a microstructural level, also hinder the passage of liquids and gases, hindering the passage of the agents that cause structural deterioration, especially in aggressive environments such as coastal or highly polluted environments.

Structure closure at the molecular level has also been demonstrated by electrical diffusivity measurements; These results support the protection of the metal structure of the concrete, increasing the useful life of the structure.

2. Improved mechanical properties

The more compact and organized architecture at the molecular level that Graphenergy Construction Graphene Oxide achieves within the concrete, allows microcrack limitation centers to form and therefore the structure becomes stronger when subjected to compression or tension loads, while favoring its flexibility.

3. Thermal insulation

The thermal insulation offered by Graphenergy construction is due to the ability of graphene oxide to dissipate heat with great efficiency and even to withstand intense electrical currents without heating up.

4. Antimicrobial protection

Graphenic additives offer different fronts of chemical and physical attacks of combined interaction, highly resistant to the formation of microbial biofilms, this means that microorganisms do not find a suitable environment to grow and release their by-products (eg. sulfuric acid) and, therefore, is not generated or, failing that, delays the appearance of microbiologically induced corrosion of concrete (MIC). This protection is extremely important, for example, for water systems since, inside the pipes, MIC is capable of dissolving up to 25 mm of concrete per year.


1. Basquiroto de Souza F., Proposed mechanism for the enhanced microstructure of graphene oxide–Portland cement composites. JOBE. 2022, 54, 104604

2. Dimov D., Ultrahigh Performance Nanoengineered Graphene Concrete Composites for Multifunctional Applications. Adv. Funct. Mother. 2018, 28, 1705183

3. Shamsaei E., Graphene-based nanosheets for stronger and more durable concrete: A review. Constr Build Mater. 2018, 183, 642

4. Krishnamurthy A., Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion. 2015. Scientific Reports, 5:13858

5. https://blog.ferrovial.com/es/2022/04/graphene-sustainability-construction/

6. https://www.graphenano.com/graphene-arrives-in-construction-to-increase-the-resistance-of-concrete/

7. https://www.manchester.ac.uk/

8. https://www.cdt.cl/desarrollan-concrete-with-nanoparticles-of-graphene-to-repel-water-and-cracks/