Graphene and Tribology

Graphene and Tribology:

The Future of Lubricants and Energy Efficiency in the Industry

Tribology is the science that studies friction, wear, and lubrication, both of natural and artificial systems in relative motion. Its study is important since all the mechanical systems in motion that surround us consume large amounts of energy due to friction. This can lead to structural deformation and fatigue, or cause crack initiation and propagation that ultimately leads to the formation of loose wear debris in the mechanisms.

As surfaces wear, they become rougher and highly reactive due to the formation of defects, causing greater energy dissipation, becoming a highly damaging cycle. This is because when one surface slides tangentially over another, there is resistance to movement caused mainly by interference between the roughness, sometimes macroscopic, between two surfaces. This resistance is called friction and occurs in the form of wear, increased temperature, and deformation. Even in the presence of a lubricating film, when the load capacity is large or the sliding time is long, the lubricating film loses thickness breaks, generating heat and friction, causing significant failures in the parts of metallurgical equipment.

“Friction and wear not only affect the operation and maintenance of industrial equipment, but the energy loss caused by these phenomena accounts for 1/3 of the world’s industrial energy consumption, while 80% of failures in pieces result in important economic impacts.”

Extensive research on the tribological properties of graphene and its derivatives has positioned it as an important two-dimensional nano-lubricant element, with anti-friction, anti-wear and anti-corrosive effects due to the following mechanisms:

• Nanometric Protective Layer: Graphene sheets, thanks to their lamellar morphology and surface energy, form a protective film that prevents direct contact between sliding surfaces. This shield minimizes friction and wear, even at micro and nano levels.

• Continuous Sliding: The weak bonds between graphene sheets allow continuous sliding, avoiding contact between moving surfaces. When these bonds are broken, the sheets are redistributed, maintaining the integrity of the protective film.

• Suppression of Degradations: Graphene suppresses abrasive, adhesive and corrosive degradation, reducing friction and preventing wear.

• Energy Dissipation Mechanisms: The stretching and bending of graphene compounds act as efficient energy dissipation mechanisms.

Theoretical studies suggest that, as temperature increases, the friction force decreases due to the accumulation of charge between carbon and hydrogen atoms, generating electrostatic repulsion. These properties have led to friction coefficients from 0.05 to 0.0003, without significant surface wear.

Energeia-Graphenemex®: Leader in Development of Technologies with Graphene

Energeia-Graphenemex®, a pioneer company in Latin America, stands out for its focus on the industrial development of graphene. Its experience in creating affordable, large-scale production methods ensures the availability of graphene materials for various applications, from its own products to strategic collaborations with other companies seeking to incorporate graphene technology into their products.

An important point to consider is that the effectiveness of graphene materials does not only lie in their simple presence within a new material, but that is also, to improve their performance as a lubricant, additional chemical modifications may be required, e.g., with nitrogen, elements. metals and their oxides, polymers, compounds such as molybdenum disulfide, boron nitride, dimanganese tetraoxide, stearic acid, oleic acid, alkylamine, among others that are being studied. At Energeia-Graphenemex® we hope to soon have the first graphene lubricant available in Mexico.

Drafting: EF/DH


  1. Bao Jin. Lubrication properties of graphene under harsh working conditions. Mater. Today Adv. 2023, 18, 100369;
  2. Liu. Yanfei, Xiangyu Ge, Jinjin Li, Graphene Lubrication, Appl. Mater. Today. 2020, 20, 100662;
  3. Jianlin Sun and Shaonan Du. Application of graphene derivatives and their nanocomposites in tribology and lubrication: a review. RSC Adv., 2019, 9, 40642;
  4. Zhiliang Li, Chonghai Xu, Guangchun Xiao, Jingjie Zhang, Zhaoqiang Chen and Mingdong Yi. Lubrication Performance of Graphene as Lubricant Additive in 4-n-pentyl-40 -cyanobiphyl Liquid Crystal (5CB) for Steel/Steel Contacts. Mater. 2018, 11, 2110;
  5. J. Li, X. Ge, J Luo, Random occurrence of macroscale superlubricity of graphite enabled by tribo-transfer of multilayer graphene nanoflakes, Carbon. 2018, 138, 154;
  6. T. Arif, G. Colas, T Filleter, Effect of humidity and water intercalation on the tribological behavior of graphene and graphene oxide, ACS Appl. Mater. Inter- faces, 2018, 10,26, 22537;
  7. Y. Liu, J. Li, X. Chen, J Luo, Fluorinated graphene: A promising macroscale solid lubricant under various environments, ACS Appl. Mater. Interfaces, 2019, 11, 43, 40470;
  8. O.L. Luévano-Cabrales, M. Alvarez-Vera, H.M. Hdz-García, R. Muñoz-Arroyo, A.I. Mtz-Enriquez, J.L. Acevedo-Dávila, et al., Effect of graphene oxide on wear resistance of polyester resin electrostatically deposited on steel sheets, Wear 2019, 426, 296;
  9. R.K. Upadhyay, A. Kumar, Effect of humidity on the synergy of friction and wear properties in ternary epoxy-graphene-MoS 2 composites, Carbon, 2019, 146, 717.

Graphene and nanomedicine: the perfect combination for improved health

Graphene and nanomedicine:

the perfect combination for improved health

Part III. Dentistry- Implantology

The application of nanotechnology in nanomedicine is based on the fact that most biological molecules, from DNA, amino acids and proteins to constituents such as hydroxyapatite and collagen fibrils, among others, exist and function at the nanometric scale.

Nanometer (nm): millionth of 1 millimeter.

Graphene materials are two-dimensional (2D) sheet-shaped carbon nanoparticles that have gained popularity in the field of biomedical sciences not only for their incredible mechanical, thermal, electrical, optical, and biological properties, but also for their ability to transfer these properties to other materials allowing the possibility of creating new compounds with advanced characteristics. In Odontology, and particularly in relation to implantology, this transfer of properties has opened numerous lines of research with great expectations due to the interesting synergistic effect between infection control and its regenerative capacity.1

Nanoparticle: particle that measures between 1 and 100 nm.

Graphene as a new strategy for the design and manipulation of dental implants and tissue regeneration. Taken from Tissue Eng Regen Med. 2017; 14(5):481

What are the problems that graphene could solve?


One of the main concerns after the placement of an implant is the failure of its osseointegration. This can occur because instead of bone cells growing at the bone-implant interface, fibrous tissue grows that does not allow implant stabilization. An alternative to favor site conditions where cell interactions will occur is modification of the implant surface by physical or chemical methods to create nanoporosities that increase surface area and favor cell activity. 2

Osseointegration: Firm, stable, and long-lasting connection between an implant and the surrounding bone. Its success depends on biological and systemic factors of the patient, in addition to the characteristics of the implant.

In the case of graphene materials, in addition to their extensive and extremely thin surface area one atom thick, another of their added values is the cloud of electrons that surrounds them, and the presence of some oxygenated groups allows them to interact with proteins serum to form a focal adhesion. In other words, the hydrophobic/hydrophilic nature of these nanomaterials in combination with the roughness of the surface contributes to the interaction with proteins and later with cells, acting as a scaffold to promote the growth, differentiation, and anchorage of bone cells in the implant, paving the way for a stable and predictable osseointegration with a better projection of useful life.3,4

The regenerative impact of graphene materials lies in their great ability to adsorb proteins, creating a layer between cells and the surfaces of the materials to promote cell adhesion and proliferation.1

Infection control

Another cause for implant failure is the appearance of peri-prosthetic or peri-implant infections; to avoid them, it is common to use techniques such as antibiotic impregnation, local drug delivery systems, and the coating of implants with titanium nanotubes, silver nanoparticles, or polypeptide nanofilms for the controlled release of antibiotics.5 However, the worrying increase of antibiotic resistance has made these strategies less and less effective.

Graphene materials, in addition to their biocompatibility, have intrinsic antimicrobial properties with advantages over traditional antibiotics as they have less chance of developing microbial resistance. Odontology has been exploring these effects for several years on bioceramic materials such as alumina and zirconium, metals such as titanium, restorative materials such as glass ionomer, and polymeric materials such as polymethyl methacrylate (PMMA), to name a few. In general, the antimicrobial mechanisms accepted for these nanostructures are: 1) physical damage to the membrane, 2) oxidative stress, 3) inactivation by electron withdrawal, 4) isolation against the passage of nutrients and finally, 5) in the case of coatings, control of hydrophobicity and surface energy can also prevent cell attachment with low affinity and prevent biofilm formation.6,7

Biofilm: Layer of microorganisms that grow and adhere to the surface of a natural structure such as teeth (dental plaque) or artificial such as a medical device (intravascular catheters).

In 2021, a group of scientists from the University of Gwangju, Korea, published a study in which they coated zirconium implants with graphene oxide using the argon plasma method. Their results reported that this modification reduced by 58.5% the presence of Streptococcus mutans, the bacterium with the greatest influence on the formation of dental plaque and dental caries, agreeing with a significant reduction in biofilm thickness of 43.4%. In addition to the antimicrobial effect, they also showed a statistically significant increase of 3.2% and 15.7% in the proliferation and differentiation of bone cells.8 These results are consistent with what was reported by the Jiao Tong University, Shanghai, on a hybrid material of titanium with graphene. synthesized by the spark plasma sintering (SPS) technique. Similarly, the research demonstrated an interesting decrease in the formation of multibacterial biofilms composed of Streptococcus mutans, Fusobacterium nucleatum and Porphyromonas gingivalis, accompanied by an improvement in the activity of human gingival fibroblasts, one of the most important cell groups involved in healing.9 In addition to the synergy between infection control and its regenerative capacity, other studies related to dental implantology are also focusing their attention on the mechanical properties for the design of new implants or restorative materials. 10-12

Energeia-Graphenemex, the pioneering Mexican company in Latin America in the research and development of applications with graphene materials, throughout its 10-year career has overcome numerous scientific and commercial challenges to reach the market with products for different industries. And being aware that to reach the health sector it is essential to carry out exhaustive evaluations, kindly invites all those companies and/or research centers that are interested in continuing to explore the benefits of graphene materials and laying increasingly solid foundations on their safe use for biomedical applications.

Drafting: EF/DHS


  1. ¿Can Graphene Oxide Help to Prevent Peri-Implantitis in the Case of Metallic Implants? Coatings 2022, 12, 1202.
  2. New design of a cementless glenoid component in unconstrained shoulder arthroplasty: a prospective medium term analysis of 143 cases. Eur J Orthop Surg Traumatol 2013. 23(1):27–34 7.
  3.  European Journal of Orthopaedic Surgery & Traumatology (2018) 28:1257
  4. Graphene-Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Adv. Healthc. Mater. 2021, 2001414.
  5. Nanotechnology and bone regeneration: a mini review. 2014 Int Orthop 38(9):1877–1884 /1. European Journal of Orthopaedic Surgery & Traumatology (2018) 28:1257
  6. Graphene: ¿An Antibacterial Agent or a Promoter of Bacterial Proliferation? iSciencie. 2020.  23, 101787
  7. Graphene: The game changer in dentistry. IP Annals of Prosthodontics and Restorative Dentistry 2022;8(1):10
  8. Antibacterial Activity of Graphene Depends on Its Surface Oxygen Content.
  9. Direct-Deposited Graphene Oxide on Dental Implants for Antimicrobial Activities and OsteogenesisInt. J. Nanomedicine 2021 :16 5745
  10. Graphene-Reinforced Titanium Enhances Soft Tissue Seal. Front. Bioeng. Biotechnol. 2021. 9:665305.
  11. Graphene-Doped Polymethyl Methacrylate (PMMA) as a New Restorative Material in Implant-Prosthetics: In Vitro Analysis of Resistance to Mechanical Fatigue. J. Clin. Med. 2023, 12, 1269.
  12. Mechanical Characterization of Dental Prostheses Manufactured with PMMA–Graphene Composites. Materials 2022, 15, 5391
  13. Fabrication and properties of in situ reduced graphene oxide-toughened zirconia composite ceramics. J. Am. Ceram. Soc. 2018, 101, 8

The safety of graphene in human health: what science says about it

The safety of graphene in human health:

what science says about it

Part II. Are graphene materials safe for humans?

The family of graphene materials comprises a wide range of two-dimensional (2D) carbon nanostructures in the form of sheets that differ from each other by the particularities derived from the production method or by the innumerable functionalizations that can be performed after its obtaining. In 2022, Nature magazine, one of the most important scientific journals in the world, published a study in which 36 products from graphene suppliers from countries such as the United States, Norway, Italy, Canada, India, China, Malaysia and England were analyzed, concluding that graphenes represent a heterogeneous class of materials with variable characteristics and properties, whether mechanical, thermal, electrical, optical, biological, etc., which can be transferred to a large number of three-dimensional (3D) compounds to modify or create new products.

“Undoubtedly, graphene and nanotechnology in general continue to be controversial issues as they confront us with a world that is difficult to see and understand, but with simply amazing effects”

Are graphene materials safe?

Graphene materials promise to be an important tool within biomedical technologies. In principle, its benefits can be used for the design of diagnostic elements such as sensors and devices for images up to neural interfaces, gene therapy, drug delivery, tissue engineering, infection control, phototherapy for cancer treatment, bioelectronic and dental medicine, among other. But for them to be truly used in this type of technology, their interactions with the biological environment must first be understood or, failing that, ensure that their presence does not alter the natural environment of the cells. In this sense, numerous studies have been carried out with the different forms, presentations, and available concentrations of graphene whose findings have gradually paved the way for its safe use in biomedical technologies:

i) Graphene materials in their free form. In in vitro tests, exposure of human lung epithelial cells to graphene sheets at concentrations lower than 0.005 mg/ml did not cause significant changes in their morphology or adhesion,2,3 nor was cytotoxic activity identified in stem cells derived from adipose tissue. human, periodontal ligament and dental pulp exposed to 0.5 mg/ml of GO,4 even and understanding a possible dose-size dependent effect, other investigations report safe concentrations below 40 mg/ml or, that do not exceed 1, 5% w/v. 5-8

Finally, one of the most recent in vivo studies published by the University of Manchester, United Kingdom, on the pulmonary response of mice exposed to graphene oxide (GO) in the respiratory tract, did not identify significant damage or pulmonary fibrosis at 90-day follow-up. These results provide solid grounds for the safety of these nanostructures without underestimating basic safety measures, such as avoiding their inhalation.9 Likewise, scientists from the University of Trieste, Italy, analyzed the impact of graphene materials on the skin, reporting low toxicity on cells.10

“It is unlikely that graphene materials in their free form are used to be in contact with the biological environment, they are generally functionalized or immobilized in other materials to develop an application”

ii) Functionalized graphene materials. Functionalization is the term that refers to the chemical modification of a nanomaterial to give it a “function”, that is, to facilitate its incorporation with other compounds or to benefit its biocompatibility and better direct its use by anchoring functional groups, molecules, or nanoparticles. A study published in the journal Nature Communications on graphene bioapplications highlights the importance of its functionalization with amino groups to make it more compatible with human immune cells.11,12

“The most common functionalization of graphene is the anchoring of oxygenated groups on its surface, this material is known as graphene oxide”

iii) Immobilization in polymers. The use of graphene materials as nano-filling for plastics, resins, coatings, etc., is the most common way in which these nanostructures are used. For the biomedical sector, its immobilization in polymers has shown good biocompatibility and stimulation of cell proliferation; antimicrobial activity and improvement of the mechanical properties of polymers, being classified as excellent candidates for the manufacture of bone fixation devices, molecular scaffolds, orthopedic implants, or dental materials.13-15

Given the great potential of graphene materials in health sciences, but also due to the many questions about their safety, an international research team from the European Graphene Flagship project, led by EMPA (German acronym for the Federal Institute for Testing and Materials Research), conducted a study to assess the potential health effects of graphene materials immobilized within a polymer; the results showed that the graphene particles released from said polymeric compounds after abrasion induce insignificant effects.16

“It is reassuring to see that this study shows negligible effects, confirming the viability of graphene for mass applications. Andrea C. Ferrari, Graphene Flagship Science and Technology Officer.” 17,18

Energeia-Graphenemex, the pioneering Mexican company in Latin America in the research and development of applications with graphene materials, throughout its 10-year career has overcome numerous scientific and industrial challenges to reach the market with products for industrial use. In 2018, it began to explore the antimicrobial capabilities of its products with excellent results in vitro and in a relevant environment; currently, and in conjunction with other research centers, it is carrying out evaluations to explore the potential of its materials as nano-reinforcement of biopolymers.

Drafting: EF/DHS


  1. Cytotoxicity survey of commercial graphene materials from worldwide. npj 2D Materials and Applications (2022) 6:65
  2. Biocompatibility of Pristine Graphene Monolayers, Nanosheets and Thin Films. 2014, 1406.2497.
  3. Preliminary In Vitro Cytotoxicity, Mutagenicity and Antitumoral Activity Evaluation of Graphene Flake and Aqueous Graphene Paste. Life 2022, 12, 242
  4. Biological and physico-mechanical properties of poly (methyl methacrylate) enriched with graphene oxide as a potential biomaterial. J Oral Res 2021; 10(2):1
  5.  Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon. 2010; 48: 4323–9
  6. Multi-layer Graphene oxide in human keratinocytes: time-dependent cytotoxicity. Prolifer Gene Express Coat 2021; 11:1
  7. Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells. Colloids Surf B Biointerfaces. 2015; 136:791
  8. Arabinoxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing. 2021. J. Tissue Eng. Regen. Med. 15, 322.
  9. Size-Dependent Pulmonary Impact of Thin Graphene Oxide Sheets in Mice: Toward Safe-by-Design. Adv. Sci. 2020, 7, 1903200
  10. Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. 2017. Sci Rep 7, 40572
  11. Amine-Modified Graphene: Thrombo-Protective Safer Alternative to Graphene Oxide for Biomedical Applications. ACS Nano 2012, 6, 2731
  12. Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nature Communications, 2017, 8: 1109,
  13. In-vitro cytotoxicity of zinc oxide, graphene oxide, and calcium carbonate nano particulates reinforced high-density polyethylene composite. J. Mater Res. Technol. 2022. 18: 921
  14. Graphene-Doped Polymethyl Methacrylate (PMMA) as a New Restorative Material in Implant-Prosthetics: In Vitro Analysis of Resistance to Mechanical FatigueJ. Clin. Med. 2023, 12, 1269
  15. High performance of polysulfone/ Graphene oxide- silver nanocomposites with excellent antibacterial capability for medical applications. Matter today commun. 2021. 27
  16. Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. J. Hazard Mater. 2022. 435. 129053

Graphene: The next revolution in biomedical applications


The next revolution in biomedical applications

Part I. Tissue Engineering

Advances in medicine have reached levels unimagined until recently. Among them, tissue engineering has an important participation. With it is possible to combine cells, biomaterials and biologically active molecules with the aim of repairing or replicating tissues or organs with a function similar to that of the original structure. In principle, biomaterials are used as molecular scaffolds to act as a three-dimensional (3D) support or guide for the anchoring and growth of the cells that will be in charge of forming the new tissue.

The first molecular scaffolds were designed with natural materials such as collagen, glycosaminoglycans (GAGs), chitosan, and alginates; then with artificial compounds such as polylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-glycolic) acid (PLGA), polyurethanes (PUs), polytetrafluoroethylene (PTFE), polyethyleneterephthalate (PET); bioceramics such as hydroxyapatite (HA) and tricalcium phosphate; metals such as stainless steel, chrome-cobalt alloys (Co-Cr) or titanium alloys (Ti) and recently, new research is oriented towards the use of nanotechnology.

The relationship between nanotechnology and tissue engineering is due to the fact, that the extracellular matrix (ECM) that helps cells unite and communicate with each other, is made up of a network of nanometer-sized fibers made up of bioactive molecules. It is at this point where nanotechnology opens new possibilities for regenerative medicine, since it has been proven that the use of materials that act on the same nanometric scale as the ECM favors mimicking the physiological environment of the organism to stimulate cell growth and differentiation in a more natural environment.

Among the most studied nanomaterials in recent years are graphene materials, which consist of nanometric sheets of carbon atoms organized in two-dimensional (2D) hexagonal networks. Among the most interesting properties for tissue engineering are: its large surface area, mechanical resistance, thermal conductivity, biocompatibility and finally, an extraordinary ability to share its properties with other materials to improve their original characteristics.

For example, the use of graphene materials within the 3D architecture of certain biopolymers in tests carried out on heart, liver, bone, cartilage, and skin tissues has shown substantial improvements in their physicochemical, mechanical, electrical and biological properties, achieving excellent response. for stem cell adhesion and differentiation.

In 2022, the Andaltec technology center (Spain) reported the development of a material from polymers derived from graphene by 3D printing with great potential for the regeneration of muscle tissue. They demonstrated that in the presence of graphene derivatives, cells contract and expand without an external stimulus, therefore, it has great potential for use in regenerative medicine.

On the other hand, the Division of Postgraduate Studies and Research (DEPeI) on Odontology, UNAM and the National School of Higher Studies (ENES) León Unit, Mx., through a study published in J Oral Res 2021 supports the possibilities of graphene oxide (GO) in the design of biomaterials for dental use. The results of the research carried out with Graphenemex® GO samples, concluded that this nanomaterial in combination with polymethylmethacrylate (PMMA), in addition to improving its physical-mechanical properties, also demonstrated good compatibility and an interesting stimulation of cell proliferation when being evaluated on cultures with gingival-fibroblasts, dental-pulp-cells and human osteoblasts.

In 2020, researchers from the University of Malaga (Spain) published another study that identified GO as the ideal material for regenerative medicine. The study carried out on an animal model, showed high biocompatibility of different types of graphene oxide with dopaminergic cells, favoring their maturation and protecting them from the toxic conditions of Parkinson’s disease. These results postulate GO as an adequate scaffold to test new drugs or develop constructs for cell replacement therapy of Parkinson’s disease.

Despite the large amount of research on the interactions of graphene materials with biological media, there is still a long way to go to have these biomaterials available and in clinical operation. Energeia- Graphenemex, the pioneering Mexican company in Latin America in the research and development of applications with graphene materials, in collaboration with other companies and research centers, seeks to contribute with science to understand these interactions in a security framework, to lay solid foundations on the use of graphene nanotechnology in the biomedical sector for the benefit of society.

Drafting: EF/DHS


  1. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. J Nanostructure Chem, 2022, 12:693
  2. Biological and physico-mechanical properties of poly (methyl methacrylate) enriched with graphene oxide as a potential biomaterial. J Oral Res 2021; 10(2):1
  3. Graphene-Based Antimicrobial Biomedical Surfaces. ChemPhysChem 2021, 22, 250
  4. Functionalized Graphene Nanoparticles Induce Human Mesenchymal Stem Cells to Express Distinct Extracellular Matrix Proteins Mediating Osteogenesis. Int J Nanomed 2020:15 2501
  5. Graphene Oxide and Reduced Derivatives, as Powder or Film Scaffolds, Differentially Promote Dopaminergic Neuron Differentiation and Survival. Front. Neurosci., 21 December 2020. Sec. Neuropharmacology Volume 14
  6. International Journal of Nanomedicine 2019:14 5753
  7. Biocompatibility Considerations in the Design of Graphene Biomedical Materials. Adv. Mat. Interfaces 2019, 6, 1900229
  8. Graphene based scaffolds on bone tissue engineering. Bioengineered, 2018, 9:1, 38
  9. When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials, 2018, 155, 236
  10. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev. 2016,105, 255

Chapter 92 e: Tissue Engineering, Anthony Atala. 2023 McGraw Hill.

Graphene as a sustainable alternative for water purification

Graphene as a sustainable alternative

for water purification

Graphene materials, that is, Graphene, Graphene Oxide (GO) and Reduced Graphene Oxide (rGO), are carbon nanostructures that, thanks to their size, area, and surface chemistry, allow the design o new three-dimensional and multifunctional materials with high probabilities. to solve the problems associated with water scarcity.

For example, they are potential coagulant/flocculating agents, this is because they have a large surface area along which there are multiple anchor points capable of capturing a large amount of organic and inorganic matter, that is, they are highly useful for the capture of contaminants.

Main strategies for the use of graphene materials for the capture of contaminants.
  Taken from Environ. Sci. Technol., 2012, 46, 7717.

They are also chemically inert and by being immobilized in a substrate they prevent organic matter from adhering to surfaces. This property, when implemented in membrane technology, would allow a flow of water almost without friction, in other words, the use of graphene materials could make the flow of water remain constant for longer and therefore provide greater energy efficiency.

Likewise, their nanometric size, the arrangement of their sheets and the presence of millions of nanochannels between them make them highly impermeable, acting as a filter for molecules or contaminants.

Ion and water transport through graphene nanochannels.
Taken from J. Phys. Chem. C 2020, 124, 31, 17320.

Finally, the important antimicrobial and photocatalytic properties of graphene and its derivatives, in addition to reducing the microbial load by taking advantage of sunlight, would also help to reduce the requirements for biocidal agents.

Schematic representation of graphene in 3D structures for water purification.
Taken from Gels 2022, 8, 622.

The identification, understanding and use of the properties of graphene for the development of real products has not been an easy task. However, on November 3, 2022, the Graphene flagship, the multidisciplinary project in which almost 10 years ago the European Commission invested 1,000 million euros for Graphene research, announced the results of the Graphil Project, which consisted of the development of a new polysulfone filter with Graphene Oxide that acts as a more efficient mechanical network to trap polluting particles such as heavy metals, antibiotics, viruses, bacteria, toxins, etc., while allowing the passage of clean and safe water.

For its part, Energeia-Graphenemex®, the pioneering Mexican company in Latin America in the research and development of applications with graphene materials, in collaboration with other companies and research centers, joins this search for strategies to improve the availability and quality of water through the use of graphene, hoping in the short term to have all these benefits available to society.


  1. Yu Z, Wei L, Lu L, Shen Y, Zhang Y, Wang J, Tan X. Structural Manipulation of 3D Graphene-Based Macrostructures for Water Purification. Gels. 2022, 29; 8(10):622.
  2. Alessandro Kovtun, Antonio Bianchi, Massimo Zambianchi, Cristian Bettini, Franco Corticelli Giampiero Ruani, Letizia Bocchi,Francesco Stante,Massimo Gazzano, Tainah Dorina Marforio, Matteo Calvaresi, Matteo Minelli,Maria Luisa Navacchia, Vincenzo Palermo and Manuela Melucci. Core–shell graphene oxide– polymer hollow fibers as water filters with enhanced performance and selectivity. Faraday Discuss., 2021, 227, 274.
  3. Sebastiano Mantovani,Sara Khaliha, Laura Favaretto, Cristian Bettini,Antonio Bianchi, Alessandro Kovtun, Massimo Zambianchi, Massimo Gazzano,  Barbara Casentini, Vincenzo Palermo and Manuela Melucci. Scalable synthesis and purification of functionalized graphene nanosheets for water remediation. Chem. Commun., 2021, 57, 3765
  4. Sara Khaliha, Tainah D. Marforio, Alessandro Kovtun, Sebastiano Mantovani, Antonio Bianchi, Maria Luisa Navacchia, Massimo Zambianchi, Letizia Bocchi. Nicoals Boulanger. Artem Iakunkov, Matteo Calvaresi, Alexandr V. Talyzin, Vincenzo Palermo, Manuela Melucci. Defective graphene nanosheets for drinking water purification: Adsorption mechanism, performance, and recovery. FlatChem., 2021, 29 100283.
  5. Yunzhen Zhao, Decai Huang, Jiaye Su, and Shiwu Gao. Coupled Transport of Water and Ions through Graphene Nanochannels. J. Phys. Chem. C 2020, 124, 31, 17320
  6. F. Guo, G. Silverberg, S. Bowers, S.-P. Kim, D. Datta, V. Shenoy and R. H. Hurt, Environmental Applications of Graphene-Based Nanomaterials. Environ. Sci. Technol., 2012, 46, 7717

Graphene: a revolution in the paper industry


a revolution in the paper industry

The paper industry represents a very broad and versatile market, in fact and despite the challenges it faces due to the impact of digital media and its competition with plastic, its world production continues to be considerable, exceeding 400 million tons distributed in products for containers and packaging, for hygienic and sanitary use, as well as paper for printing, writing and the press.

“It is estimated that by the end of 2022 cardboard will represent two thirds of world paper production”

On the other hand, the continuous need for innovation as well as the search for solutions to the problems inherent in these products, such as their easy contamination and permeability, have made nanotechnology remain an important tool with the use of different nanomaterials such as nano- cellulose crystals and nanofibers, nanoparticles of silicon oxide (SiO2), titanium dioxide (TiO2), zinc dioxide (ZrO2) and recently graphene materials such as graphene and graphene oxide (GO) 1 with the aim of design nano-scale building blocks to obtain denser and less porous networks that, in addition to improving the quality of the final product, also diversify its use.

Cellulose, in addition to being one of the most abundant natural polymers on earth, is also the main raw material for the paper industry. Graphene is obtained from graphite, a very abundant carbon mineral in Mexico”

How do graphene materials benefit the paper industry?

When talking about graphene, the main points of reference are its resistance, impermeability, flexibility, conductivity, lightness, biocompatibility, etc., all in a single material. Given this, it is important to understand that the behavior of graphene materials will depend, among other things, on the type of graphene, functionalization and concentration, but also on the processes involved in each industry and the nature of the materials with which it will be combined to transfer its properties and therefore there is no exact formula for each usage target, for example:

Mechanical strength- In the case of cellulose films, the presence of as little as 0.5% GO can significantly improve tensile strength, elongation at break and fracture energy by 78%, 172% and 397%, respectively; useful for its application in high performance bioplastic films2.

Antimicrobial protection- Among the benefits of interest to the paper industry are its biocompatibility, its physical barrier properties and its antimicrobial activity. For example, a study that prepared a paper coating with 0.05% GO reduced the growth rate of bacteria such as E. coli and S. aureus by 73% and 53%, respectively3,4. This is because GO helps limit microbial adhesion, replication and penetration.

Protection against UV radiation- According to another report, the use of 2% GO in cellulose films blocks UVA and UVB radiation by 66.7% and 54.2% respectively, without affecting the transmission of visible light, an interesting property for the design of protection and packaging materials.5

Barrier properties- Graphene materials present nano-channels between their sheets that represent a tortuous path for the passage of large molecules and, therefore, it is widely investigated both for its great impermeability against liquids and gases, but also for its potential benefits for the decontamination, purification and even desalination of seawater. Research carried out on cellulose acetate (CA) membranes for desalination described that the use of 1% GO improves morphology, hydrophilicity, porosity, roughness, mechanical resistance, thermal stability and, therefore, its operating efficiency, as well as it has happened with other types of membranes such as polysulfone, in which a concentration of 0.2% GO can be enough to improve their performance by up to 72%, in terms of water flow and salt rejection in tests with sodium sulfate. sodium6,7. The foregoing is not only reflected in the efficiency of filtration and/or desalination, but also the optimization of maintenance resources and energy consumption of said systems.

Energeia- Graphenemex®, the leading company in Latin America in the design and development of applications with graphene materials, continuously works to solve the obstacles that graphene faces to reach the market and, through strategic alliances with other industries, seeks to make this technology available to the industry for solving various problems.


  1. Trache, D., Thakur, V. K., & Boukherroub, R. 2020., Cellulose nanocrystals/graphene hybrids—a promising new class of materials for advanced applications. Nanomaterials, 10(8), 1523.
  2. M. Akhtari, M. Dehghani-Firouzabadi, M. Aliabadi, M. Arefkhani. Effect of graphene oxide nanoparticle coatings on the strength of packaging paper and its barrier and antibacterial properties. 2019., Bois et Forêts des Tropiques. 342, 69.
  3. W. Hu, Ch. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, and Ch. Fan. Graphene-Based Antibacterial Paper. 2010. ACS Nano, 4, 7, 4317–4323
  4. X. Liu, T. Zhang, K. Pang, Y. Duan and J. Zhang. Graphene oxide/cellulose composite films with enhanced UV-shielding and mechanical properties prepared in NaOH/urea aqueous solution. 2016., RSC Adv., 6, 73358
  5. Zhang, X. F., Song, L., Wang, Z., Wang, Y., Wan, L., & Yao, J. 2020., Highly transparent graphene oxide/cellulose composite film bearing ultraviolet shielding property. International journal of biological macromolecules, 145, 663.
  6. S. M. Ghaseminezhad, M. Barikani, M. Salehirad.  Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination. Composites Part B: Engineering. 2019., 161, 15, 320.
  7. B.M. Ganesh, Arun M. Isloor, A.F.Ismail., Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. 2013., Desalination., 313, 199.

The graphene revolution in the automotive industry: innovation in vehicle care and protection

The graphene revolution in the automotive industry:

innovation in vehicle care and protection

Just as continuous exposure to solar radiation is harmful to our skin, it also affects the appearance of cars, in particular it causes damage to paint, moldings, tires and other auto parts. In fact, the sun, acid rain and temperature changes are three of its main enemies, for that reason there are countless product options on the market for its care.

Graphene is the most interesting form in which Carbon can occur and consists of sheets of carbon atoms extracted mainly from Graphite or from some gases. The great scientific and technological relevance of this material is due to the particular organization of its atoms, which gives it surprising and numerous properties that have captured the attention of a large number of industries, including the automotive industry.

The potential uses attributed to Graphene for this industry are the manufacture of coatings for chassis and bodies, plastics for auto parts, either to improve their quality or to totally or partially replace metal parts, tires, textiles, greases, lubricants and products for car care.

Energeia- Graphenemex® dedicated to the research and production of graphene materials as well as the development of applications at an industrial level, in 2018 under the Nanocar® brand, placed on the market the first line of products with Graphene for automotive care.


Nanocar® products form a protective and nano-filling film for defects that allows the atomic sheets of Graphene to adhere to the surfaces of the bodywork, protecting against dust and moisture, delaying the effects of corrosion, as well as acting as a barrier against UV radiation and as a temperature dissipator to limit the long-term deterioration of the paint. In addition, the continuous use of Nanocar® products facilitates subsequent cleaning, without leaving a trace of drying, even when washing is carried out with hot surfaces.

Relationship of the properties of Graphene and its effects on Nanocar® products

Drafting: EF/DHS

The rise of graphene: advances and developments in the last decade

The rise of graphene:

advances and developments in the last decade

Graphene is the most revolutionary nanomaterial of the 21st century and is considered the basic pillar for carbon nanochemistry, that is, the main element of all organic compounds.

Its versatility derives from its structure in the form of two-dimensional (2D) sheets, made up of carbon atoms linked in a hexagonal manner, and its importance lies in the extraordinary properties attributed to it and that have been conceived as the solution to innumerable social, environmental, scientific, technological and of course, economic needs.

Graphene sheet. High Resolution Transmission Electron Microscopy.
Energeia Collection – Graphenemex

Graphene allows matter to be modified to design compounds with new or improved characteristics, since it transfers its properties to the materials to which it is incorporated. This has allowed it to be used in the development of applications that seek to potentiate these properties, as shown in the following image.

Evolution – Graphene was first isolated in 2004 by Russian researchers Andre Geim and Konstantin Novoselov from the University of Manchester; subsequently, and thanks to their experiments, in 2010 they were awarded the Nobel Prize in Physics, as it was considered one of the most important discoveries of the century.

So important was the finding that in 2013 the European Union (EU) granted a budget of one billion euros to create the Graphene Flagship, an ambitious project valid for ten years with the aim of linking academia with industry, not only to understand its properties theoretically, but to fully exploit its benefits in real applications or products.

From that moment on, the progress of the investigations was so fast, and the expectations were higher and higher that, in 2017, the first edition of the ISO/TS 80004-13:2017 standard emerged (Ratified by the Spanish Association for Standardization in October 2020) for the normalization and standardization of Nanotechnology in new materials, including Graphene.

In the same 2020, a group of 70 researchers who are members of the Graphene Flagship, published the first manual with more than 500 pages on countless types of Graphene. By 2021, around 50 “spin-offs” and “startups” with different visions were registered within the organization, making the possibility of having a greater number of applications with Graphene or graphene materials at more affordable costs a reality by 2022.

In 2021 again the EU through the Federal Institute for Materials Research and Testing (BAM) with the new ISO-G-SCoPe project, set the objective of standardizing the methods to transfer Graphene to the industry, this as a result of the non-existence of production and quality standards, while, through the Versailles Project on Advanced Materials and Standards, under the direction of BAM, it seeks to validate the processes in a global test to convert them into standards.

Energeia Graphenemex® is the pioneer Mexican company in Latin America focused on the research and production of graphene materials for the development of applications at an industrial level. Among its strengths is the creation of patented methods and processes for replicable and large-scale production that ensures the availability of the appropriate graphene materials in accordance with the requirements of the applications it develops, either for its own products or as a strategic ally of other companies interested in innovating and improving their products with these materials.