Grafeno y nanomedicina: la combinación perfecta para una salud mejorada

Grafeno y nanomedicina:

la combinación perfecta para una salud mejorada

Parte lll. Odontología- Implantología

La aplicación de la nanotecnología en la nanomedicina se fundamenta en que la mayoría de las moléculas biológicas desde el ADN, aminoácidos y proteínas hasta constituyentes como la hidroxiapatita y las fibrillas de colágeno, entre otros, existen y funcionan en la escala nanométrica.

Nanómetro (nm): millonésima parte de 1 milímetro.

Los materiales grafénicos son nanopartículas de carbono en forma de láminas de dos dimensiones (2D) que han ganado popularidad en el campo de las ciencias biomédicas no sólo por sus increíbles propiedades mecánicas, térmicas, eléctricas, ópticas y biológicas, sino también por su capacidad de transferir estas propiedades a otros materiales permitiendo la posibilidad de crear nuevos compuestos con características avanzadas. En Odontología y en particular en lo relacionado con la implantología, esta transferencia de propiedades ha permitido abrir numerosas líneas de investigación con grandes expectativas debido al interesante efecto sinérgico entre el control de infecciones y su capacidad regenerativa.1

Nanopartícula: partícula que mide entre 1 y 100 nm.

El grafeno como nueva estrategia para el diseño y manipulación de implantes dentales y regeneración tisular. Tomado de Tissue Eng Regen Med. 2017; 14(5): 481

¿Cuáles son los problemas que el grafeno podría resolver?

Osteointegración

Una de las principales preocupaciones después de la colocación de un implante es el fracaso en su osteointegración. Esto puede ocurrir porque en la interfase hueso- implante en lugar de crecer células óseas, crece un tejido fibroso que no permite la estabilización del implante. Una alternativa para favorecer las condiciones del sitio donde ocurrirán las interacciones celulares es la modificación de la superficie del implante por medio de métodos físicos o químicos para crear nanoporosidades que aumenten la superficie de área y favorezcan la actividad celular. 2

Oseointegración: conexión firme, estable y duradera entre un implante y el hueso que lo rodea. Su éxito depende de factores biológicos y sistémicos del paciente, además de las características del implante.

En el caso de los materiales grafénicos, además de su extensa y extremadamente fina superficie de área de un átomo de espesor, otro de sus valores agregados es la nube de electrones que los rodea y la presencia de algunos grupos oxigenados les permite interactuar con las proteínas séricas para formar una adhesión focal. Es decir, el carácter hidrofóbico/hidrofílico de estos nanomateriales en combinación con la rugosidad de la superficie coadyuva en la interacción con las proteínas y posteriormente con las células, actuando como andamio para promover el crecimiento, diferenciación y anclaje de las células óseas en el implante, favoreciendo el camino para una osteointegración estable y predecible con una mejor proyección de la vida útil.3,4 

El Impacto regenerativo de los materiales grafénicos reside en su gran habilidad para adsorber proteínas creando una capa entre las células y las superficies de los materiales para promover la adhesión y proliferación celular.1

Control de infecciones

Otra causa para el fallo de un implante es la aparición de infecciones peri- protésicas o peri- implantares; para evitarlas es común utilizar técnicas como impregnación con antibióticos, sistemas locales de administración de fármacos y el recubrimiento de implantes con nanotubos de titanio, nanopartículas de plata o con nano- películas polipeptídicas para la liberación controlada de antibióticos.5 No obstante, el preocupante aumento de la resistencia a antibióticos ha desencadenado que estas estrategias sean cada vez menos efectivas.

Los materiales grafénicos además de su biocompatibilidad, cuentan con propiedades antimicrobianas intrínsecas con ventajas sobre los antibióticos tradicionales al tener menos posibilidades de desarrollo de resistencia microbiana. Estos efectos desde hace varios años son explorados por la odontología sobre materiales biocerámicos como la alúmina y el zirconio, metales como el titanio, materiales de restauración como el ionómero de vidrio y materiales poliméricos como el polimetilmetacrilato (PMMA), por mencionar algunos. En general, los mecanismos antimicrobianos aceptados para estas nanoestructuras son: 1) daño físico a la membrana, 2) estrés oxidativo, 3) inactivación por extracción de electrones, 4) aislamiento contra el paso de nutrientes y finalmente, 5) en el caso de los recubrimientos, el control de la hidrofobicidad y la energía de superficie también puede impedir la unión de células con baja afinidad y prevenir la formación de biopelículas.6,7

Biopelícula: Capa de microorganismos que crecen y se adhieren a la superficie de una estructura natural como los dientes (placa dentobacteriana) o artificial como un dispositivo médico (catéteres intravasculares).

En 2021 un grupo de científicos de la universidad de Gwangju, Corea, publicó un estudio en el cual recubrieron implantes de zirconio con óxido de grafeno por el método de plasma de argón. Sus resultados reportaron que esta modificación redujo en un 58.5% la presencia del Streptococcus mutans, la bacteria de mayor influencia en la formación de la placa dentobacteriana y de la caries dental, concordando con una importante reducción en el espesor de la biopelícula del 43.4%. Además del efecto antimicrobiano también evidenciaron un aumento estadísticamente significativo del 3.2% y 15.7% en la proliferación y diferenciación de las células óseas.8 Estos resultados son consistentes con lo reportado por la  Universidad Jiao Tong, Shanghái, sobre un material híbrido de titanio con grafeno sintetizado por la técnica de sinterización por plasma de chispa (SPS). De igual manera, la investigación demostró una interesante disminución de la formación de biopelículas multibacterianas compuestas por Streptococcus mutans, Fusobacterium nucleatum y Porphyromonas gingivalis, acompañada poruna mejora en la actividad de los fibroblastos gingivales humanos, uno de los grupos celulares más importantes que participan en la cicatrización.9 Además de la sinergia entre el control de infecciones y su capacidad regenerativa, otros estudios relacionados con la implantología dental, también están enfocando su atención en las propiedades mecánicas para el diseño de nuevos implantes o materiales de restauración. 10- 12

Energeia- Graphenemex, la empresa mexicana pionera en América Latina en la investigación y desarrollo de aplicaciones con materiales grafénicos, a lo largo de 10 años de carrera ha superado numerosos retos científicos y comerciales para llegar al mercado con productos para distintas industrias. Y siendo consiente que para llegar al sector salud es fundamental realizar  exhaustivas evaluaciones, hace una atenta invitación a todas aquellas empresas y/o centros de investigación que estén interesados en seguir explorando los beneficios de los materiales grafénicos y sentar bases cada vez más sólidas sobre su uso seguro para aplicaciones biomédicas. 

Redacción: EF/DHS

Referencias

  1. ¿Can Graphene Oxide Help to Prevent Peri-Implantitis in the Case of Metallic Implants? Coatings 2022, 12, 1202.
  2. New design of a cementless glenoid component in unconstrained shoulder arthroplasty: a prospective medium term analysis of 143 cases. Eur J Orthop Surg Traumatol 2013. 23(1):27–34 7. European Journal of Orthopaedic Surgery & Traumatology (2018) 28:1257
  3. Graphene-Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Adv. Healthc. Mater. 2021, 2001414.
  4. Nanotechnology and bone regeneration: a mini review. 2014 Int Orthop 38(9):1877–1884 /1. European Journal of Orthopaedic Surgery & Traumatology (2018) 28:1257
  5. Graphene: ¿An Antibacterial Agent or a Promoter of Bacterial Proliferation? iSciencie. 2020.  23, 101787
  6. Graphene: The game changer in dentistry. IP Annals of Prosthodontics and Restorative Dentistry 2022;8(1):10
  7. Antibacterial Activity of Graphene Depends on Its Surface Oxygen Content.
  8. Direct-Deposited Graphene Oxide on Dental Implants for Antimicrobial Activities and OsteogenesisInt. J. Nanomedicine 2021 :16 5745
  9. Graphene-Reinforced Titanium Enhances Soft Tissue Seal. Front. Bioeng. Biotechnol. 2021. 9:665305.
  10. Graphene-Doped Polymethyl Methacrylate (PMMA) as a New Restorative Material in Implant-Prosthetics: In Vitro Analysis of Resistance to Mechanical Fatigue. J. Clin. Med. 2023, 12, 1269.
  11. Mechanical Characterization of Dental Prostheses Manufactured with PMMA–Graphene Composites. Materials 2022, 15, 5391
  12. Fabrication and properties of in situ reduced graphene oxide-toughened zirconia composite ceramics. J. Am. Ceram. Soc. 2018, 101, 8

La seguridad del grafeno en la salud humana: lo que la ciencia dice al respecto

La seguridad del grafeno en la salud humana:

lo que la ciencia dice al respecto

Parte ll. ¿Son seguros los materiales grafénicos para los seres humanos?

La familia de los materiales grafénicos comprende una amplia gama de nanoestructuras de carbono de dos dimensiones (2D) en forma de láminas que se diferencian entre sí por las particularidades derivadas del método de producción o bien, por las innumerables funcionalizaciones que se pueden realizar después de su obtención. En 2022 la revista Nature, una de las revistas científicas más importantes a nivel mundial publicó un estudio en el cual se analizaron 36 productos de proveedores de grafeno de países como Estados unidos, Noruega, Italia, Canadá, India, China, Malaysia e Inglaterra, concluyendo que los grafenos representan una clase heterogénea de materiales con características y propiedades variables1 ya sea mecánicas, térmicas, eléctricas, ópticas, biológicas, etc., que se pueden transferir a una gran cantidad de compuestos tridimensionales (3D) para modificar o crear nuevos productos.

“Indudablemente el grafeno y la nanotecnología en general siguen siendo temas controversiales pues nos enfrentan a un mundo difícil de ver y comprender, pero con efectos simplemente sorprendentes”

¿Son seguros los materiales grafénicos?

Los materiales grafénicos prometen ser una importante herramienta dentro de las tecnologías biomédicas; en principio sus beneficios se pueden aprovechar para el diseño de elementos diagnóstico como sensores y dispositivos para imagenología hasta interfases neuronales, terapia génica, entrega de medicamentos, ingeniería de tejidos, control de infecciones, fototerapia para el tratamiento del cáncer, medicina bioelectrónica y estomatológica, entre otras. Pero para que puedan ser realmente utilizados en este tipo de tecnologías primero se deben comprender sus interacciones con el medio biológico o en su defecto, asegurar que su presencia no altere el entorno natural de las células. En este sentido, se han realizado numerosos estudios con las diferentes formas, presentaciones y concentraciones disponibles de grafeno cuyos hallazgos gradualmente han ido allanando el camino para un uso seguro en las tecnologías biomédicas:   

i) Materiales grafénicos en su forma libre. En pruebas in vitro, la exposición de células epiteliales de pulmón humano a láminas de grafeno a concentraciones menores de 0.005 mg/ml no provocó cambios importantes en su morfología o adhesión,2,3 tampoco se identificó actividad citotóxica en células madre derivadas de tejido adiposo humano, ligamento periodontal y pulpa dental expuestas a 0.5 mg /ml de GO,4 incluso y comprendiéndose un posible efecto dosis- tamaño dependiente, otras investigaciones reportan concentraciones seguras por debajo de los 40 mg/ml o bien, que no excedan el 1,5 % p/v. 5-8  

Finalmente, uno de los estudios in vivo más recientes publicado por la Universidad de Manchester, Reino Unido, sobre la respuesta pulmonar de ratones expuestos al óxido de grafeno (GO) en vías respiratorias, no identificó daños significativos o fibrosis pulmonar a 90 días de seguimiento. Estos resultados dan bases sólidas sobre la seguridad de estas nanoestructuras sin desestimar las medidas de seguridad básicas, como el hecho de evitar su inhalación.9 Asimismo, científicos de la Universidad de Trieste, Italia, analizaron el impacto de los materiales grafénicos en la piel, reportando baja toxicidad sobre las células.10

“Es poco probable que los materiales grafénicos en su forma libre se utilicen para estar en contacto con el medio biológico, generalmente se funcionalizan o inmovilizan en otros materiales para desarrollar una aplicación”

ii) Materiales grafénicos funcionalizados. Funcionalización es el término que hace referencia a la modificación química de un nanomaterial para otorgarle una “función”, es decir, para facilitar su incorporación con otros compuestos o para beneficiar su biocompatibilidad y dirigir mejor su uso mediante el anclaje de grupos funcionales, moléculas o nanopartículas. Un estudio publicado por la revista Nature Communications sobre las bioapliaciones del grafeno, remarca la importancia de su funcionalización con grupos amino para que sean más compatibles con las células inmunitarias humanas.11,12

“La funcionalización más común del grafeno es el anclaje de grupos oxigenados en su superficie, a este material se le conoce como óxido de grafeno”

iii) Inmovilización en polímeros. El uso de los materiales grafénicos como nano- relleno de plásticos, resinas, recubrimientos, etc., es la forma más común en la que estas nanoestructuras son utilizadas. Para el sector biomédico su inmovilización en polímeros ha demostrado buena biocompatibilidad y estimulación de la proliferación celular; actividad antimicrobiana y mejora de las propiedades mecánicas de los polímeros, siendo clasificados como excelentes candidatos para la fabricación de dispositivos de fijación ósea, andamios moleculares, implantes en ortopedia o materiales dentales.13- 15

Ante el gran potencial de los materiales grafénicos en las ciencias de las salud, pero también debido a las numerosas interrogantes sobre su seguridad, un equipo internacional de investigación del proyecto europeo Graphene Flagship, dirigido por el EMPA (acrónimo alemán del Instituto Federal de Pruebas e Investigación de Materiales), realizó un estudio para evaluar los posibles efectos sobre la salud de los materiales grafénicos inmovilizados dentro de un polímero; los resultados demostraron que las partículas de grafeno liberadas de dichos compuestos poliméricos después de la abrasión inducen efectos poco significativos.16

“Es tranquilizador ver que este estudio muestra efectos insignificantes, lo que confirma la viabilidad del grafeno para aplicaciones masivas. Andrea C. Ferrari, Oficial de Ciencia y Tecnología del Graphene Flagship”.17,18

Energeia- Graphenemex, la empresa mexicana pionera en América Latina en la investigación y desarrollo de aplicaciones con materiales grafénicos, a lo largo de 10 años de carrera ha superado numerosos retos científicos e industriales para llegar al mercado con productos de uso industrial.  En 2018 comenzó a explorar las capacidades antimicrobianas de sus productos con excelentes resultados in vitro y en ambiente relevante; actualmente y en conjunto con otros centros de investigación se encuentra realizando evaluaciones para explorar el potencial de sus materiales como nano- refuerzo de biopolímeros.

Redacción: EF/DHS

Referencias

  1. Cytotoxicity survey of commercial graphene materials from worldwide. npj 2D Materials and Applications (2022) 6:65
  2. Biocompatibility of Pristine Graphene Monolayers, Nanosheets and Thin Films. 2014, 1406.2497.
  3. Preliminary In Vitro Cytotoxicity, Mutagenicity and Antitumoral Activity Evaluation of Graphene Flake and Aqueous Graphene Paste. Life 2022, 12, 242
  4. Biological and physico-mechanical properties of poly (methyl methacrylate) enriched with graphene oxide as a potential biomaterial. J Oral Res 2021; 10(2):1
  5.  Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon. 2010; 48: 4323–9
  6. Multi-layer Graphene oxide in human keratinocytes: time-dependent cytotoxicity. Prolifer Gene Express Coat 2021; 11:1
  7. Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells. Colloids Surf B Biointerfaces. 2015; 136:791
  8. Arabinoxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing. 2021. J. Tissue Eng. Regen. Med. 15, 322.
  9. Size-Dependent Pulmonary Impact of Thin Graphene Oxide Sheets in Mice: Toward Safe-by-Design. Adv. Sci. 2020, 7, 1903200
  10. Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. 2017. Sci Rep 7, 40572
  11. Amine-Modified Graphene: Thrombo-Protective Safer Alternative to Graphene Oxide for Biomedical Applications. ACS Nano 2012, 6, 2731
  12. Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nature Communications, 2017, 8: 1109,
  13. In-vitro cytotoxicity of zinc oxide, graphene oxide, and calcium carbonate nano particulates reinforced high-density polyethylene composite. J. Mater Res. Technol. 2022. 18: 921
  14. Graphene-Doped Polymethyl Methacrylate (PMMA) as a New Restorative Material in Implant-Prosthetics: In Vitro Analysis of Resistance to Mechanical FatigueJ. Clin. Med. 2023, 12, 1269
  15. High performance of polysulfone/ Graphene oxide- silver nanocomposites with excellent antibacterial capability for medical applications. Matter today commun. 2021. 27
  16. Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. J. Hazard Mater. 2022. 435. 129053
  17. https://www.empa.ch/web/s604/graphene-dust
  18. https://www.graphene-info.com/researchers-asses-health-hazards-graphene-enhanced-composites

Grafeno: La próxima revolución en aplicaciones biomédicas

Grafeno:

La próxima revolución en aplicaciones biomédicas

Parte I. Ingeniería de Tejidos

Los avances en la medicina han llegado a niveles hasta hace poco tiempo, inimaginados. Entre ellos, la ingeniería de tejidos tiene una participación importante. Con ella es posible combinar células, biomateriales y moléculas biológicamente activas con el objetivo de reparar o replicar tejidos u órganos con un funcionamiento similar al de la estructura original. En principio, los biomateriales son utilizados como andamios moleculares para que actúen como soporte o guía tridimensional (3D) para el anclaje y crecimiento de las células que se encargarán de formar el nuevo tejido.

Los primeros andamios moleculares se diseñaron con materiales naturales como el colágeno, glicosaminoglicanos (GAGs), quitosano y alginatos; después con compuestos artificiales como el poliácido láctico (PLA), ácido poliglicólico (PGA), ácido poli (láctico-co-glicólico) (PLGA), poliuretanos (PUs), politetrafluoroetileno (PTFE), polietilentereftalato (PET); biocerámicas como la hidroxiapatita (HA) y fosfato tricálcico; metales como el acero inoxidable, aleaciones cromo-cobalto (Co-Cr) o aleaciones de titanio (Ti) y recientemente, las nuevas investigaciones se orientan al uso de la nanotecnología.

La relación entre la nanotecnología y la ingeniería de tejidos se debe a que la matriz extracelular (MEC) que ayuda a que las células se unan y se comuniquen entre sí, está formada por una red de fibras de tamaño nanométrico compuesta por moléculas bioactivas. Es en este punto donde la nanotecnología abre nuevas posibilidades a la medicina regenerativa, pues se ha comprobado que el uso de materiales que actúen en la misma escala nanométrica de la MEC favorece para mimetizar el entorno fisiológico del organismo para estimular el crecimiento y diferenciación celular en un ambiente más natural.

Entre los nanomateriales más estudiados en los últimos años están los materiales grafénicos,que consisten en láminas nanométricas de átomos de carbono organizados en redes hexagonales de dos dimensiones (2D). Entre las propiedades más interesantes para la ingeniería de tejidos destacan su extensa superficie de área, resistencia mecánica, conductividad térmica, biocompatibilidad y finalmente, una extraordinaria capacidad para compartir sus propiedades con otros materiales para mejorar sus características originales.

Por ejemplo, el uso de materiales grafénicos dentro de la arquitectura 3D de ciertos biopolímeros en pruebas realizadas sobre tejidos de corazón, hígado, hueso, cartílago y piel, ha demostrado mejoras sustanciales de sus propiedades fisicoquímicas, mecánicas, eléctricas y biológicas, logrando excelente respuesta para la adhesión y diferenciación de células madre.

En 2022 el centro tecnológico Andaltec (España) reportó el desarrollo de un material a partir de polímeros derivados del grafeno por impresión 3D con gran potencial para la regeneración de tejido muscular. Ellos demostraron que en presencia de los derivados de grafeno las células se contraen y se expanden sin que exista un estímulo externo, por lo tanto, tiene grandes posibilidades para su uso en medicina regenerativa.

Por otro lado, la División de Estudios de Posgrado e Investigación (DEPeI) en Odontología, UNAM y la Escuela Nacional de Estudios Superiores (ENES) Unidad León, Mx., a través de un estudio publicado en el J Oral Res 2021 respalda las posibilidades del óxido de grafeno (GO) en el diseño de biomateriales para uso odontológico. Los resultados de la investigación realizada sobre muestras de GO (Graphenemex®) concluyeron que este nanomaterial en combinación con el polimetilmetacrilato (PMMA), además de mejorar sus propiedades físico-mecánicas, también demostró buena compatibilidad y una interesante estimulación de la proliferación celular al ser evaluado sobre cultivos con fibroblastos-gingivales, células-pulpares-dentales y osteoblastos humanos.

En 2020, investigadores de la Universidad de Málaga (España) publicaron otro estudio que de igual manera identificó al GO como el material idóneo para la medicina regenerativa. El estudio realizado sobre un modelo animal evidenció alta biocompatibilidad de distintos tipos de óxido de grafeno con células dopaminérgicas, favoreciendo su maduración y protegiéndolas de las condiciones tóxicas de la enfermedad de Parkinson, esto resultados postulan al GO como un andamio adecuado para probar nuevos fármacos o desarrollar construcciones para la terapia de reemplazo de células de la enfermedad de Parkinson.

A pesar de la gran cantidad de investigaciones sobre las interacciones de los materiales grafénicos con los medios biológicos, aún queda un largo camino por recorrer para tener estos biomateriales disponibles y en funcionamiento clínico. Energeia- Graphenemex, la empresa mexicana pionera en América Latina en la investigación y desarrollo de aplicaciones con materiales grafénicos, en colaboración con otras compañías y centros de investigación busca contribuir con la ciencia para comprender estas interacciones en un marco de seguridad, para sentar bases sólidas sobre el uso de la nanotecnología grafénica en el sector biomédico en beneficio de la sociedad.

Redacción: EF/DHS

Referencias

  1. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. J Nanostructure Chem, 2022, 12:693
  2. Biological and physico-mechanical properties of poly (methyl methacrylate) enriched with graphene oxide as a potential biomaterial. J Oral Res 2021; 10(2):1
  3. Graphene-Based Antimicrobial Biomedical Surfaces. ChemPhysChem 2021, 22, 250
  4. Functionalized Graphene Nanoparticles Induce Human Mesenchymal Stem Cells to Express Distinct Extracellular Matrix Proteins Mediating Osteogenesis. Int J Nanomed 2020:15 2501
  5. Graphene Oxide and Reduced Derivatives, as Powder or Film Scaffolds, Differentially Promote Dopaminergic Neuron Differentiation and Survival. Front. Neurosci., 21 December 2020. Sec. Neuropharmacology Volume 14
  6. International Journal of Nanomedicine 2019:14 5753
  7. Biocompatibility Considerations in the Design of Graphene Biomedical Materials. Adv. Mat. Interfaces 2019, 6, 1900229
  8. Graphene based scaffolds on bone tissue engineering. Bioengineered, 2018, 9:1, 38
  9. When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials, 2018, 155, 236
  10. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev. 2016,105, 255
  11. Capítulo 92e: Ingeniería de tejidos, Anthony Atala. 2023 McGrawHill.

Tomado de Journal of Nanostructure in Chemistry (2022) 12:693

Innovación en la industria plástica: cómo los masterbatches de grafeno están cambiando el juego

Innovación en la industria plástica:

cómo los masterbatches de grafeno están cambiando el juego


El grafeno posee extraordinarias propiedades eléctricas, ópticas, térmicas y una elevada resistencia mecánica. Las propiedades del grafeno son atribuidas a su estructura en forma de láminas bidimensionales (2D), formada por átomos de carbono enlazados de manera hexagonal y un espesor de un átomo de carbono.


Hoy en día, el grafeno es el aditivo nanotecnológico más prometedor en la industria del plástico.  La incorporación de grafeno y sus derivados (oxido de grafeno, GO) en diferentes matrices poliméricas (masterbatches), poseen un gran potencial para una amplia gama de aplicaciones. El masterbatch con grafeno, puede actuar como refuerzo mecánico o aditivo conductor tanto para materiales termoplásticos como termoestables. Pueden utilizarse en el sector automotriz, aeroespacial, electrónica o embalaje.


Los compuestos poliméricos a base de grafeno han mostrado mejoras significativas en propiedades como el módulo elástico, resistencia a la tensión, resistencia al impacto, conductividad eléctrica, resistencia a la radiación UV, estabilidad térmica, propiedad antimicrobiana, impermeabilidad o efecto barrera (no permite la difusión de humedad u otras moléculas).


Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea de Graphenergy Masterbatch, ha desarrollado y tiene a la venta una amplia gama de masterbatches con grafeno, basados en varios polímeros, como PP, HDPE, LDPE, PET y PA6.


Nuestros Masterbatches son materiales granulados que actúan como aditivos multifuncionales. La incorporación de grafeno en diferentes matrices poliméricas ha mostrado efectos importantes sobre las propiedades y condiciones de procesamiento de los plásticos, entre las que destacan:


  • Incremento en la resistencia a la tensión, deformación e impacto
  • Incremento en la resistencia a rayos ultravioleta
  • Excelente dispersión
  • Mejora las condiciones de procesamiento (estabilidad térmica)
  • Actúa como agente nucleante (modificación de la temperatura de cristalización del polímero)


En este sentido, se ha encontrado que la incorporación de grafeno y sus derivados, asi como la concentración, puede modificar las propiedades fisicomecánicas del polímero a procesar.  La adición de masterbatch a diferentes polímeros, ha mejorado en menor o mayor proporción las características finales del material, por ejemplo:


  • Aditivación de Polipropileno (PP) con masterbatch de polipropileno -grafeno (MB-PP/GO), aumenta la resistencia a la tensión (8 %) y porcentaje de ruptura (29 %).
  • Aditivación de Polietileno (PE) con masterbatch de polietileno -grafeno (MB-PE/GO), mejora la resistencia a la tensión (17 %), resistencia a la flexión y resistencia a la ruptura (66%).
  • Aditivación de Polietilen tereftalato (PET) con masterbatch de Polietilen tereftalato -grafeno (MB-PET/GO), mejora la resistencia a la humedad, incrementa la resistencia a la tensión (72.2 %) y mejora la resistencia al impacto.
  • Aditivación de Policarbonato (PC) con masterbatch de policarbonato -grafeno (MB-PC/GO), mejora la resistencia a la humedad y mejora la resistencia a la ruptura (276 %).


Por otro lado, los masterbatches con grafeno también pueden ser incorporados a polímeros reciclados. En la actualidad, la reutilización y el reciclado de materiales plásticos son de vital importancia en el camino de transición hacia una economía circular. En este aspecto, el constante lavado, peletizado y reprocesamiento pueden producir la pérdida de propiedades fisicomecánicas de los plásticos reciclados, por lo que, al añadir grafeno, se puede restaurar o mejorar dichas propiedades. En aplicaciones agrícolas, se puede producir películas para acolchados con mayor resistencia a la radiación ultravioleta.


Referencias

  • Fang, M., et al., Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry. 19(38): p. 7098-7105.
  • Kim, H., A.A. Abdala, and C.W. Macosko, Graphene/Polymer Nanocomposites. Macromolecules. 43(16): p. 6515-6530.
  • Balandin, A.A., et al., Superior Thermal Conductivity of Sin gle-Layer Graphene. Nano Letters, 8(3): p. 902-907.
  • Nabira Fatima, Umair Yaqub Qazi, Asim Mansha., Recent developments for antimicrobial applications of graphene-based polymeric composites: A review, https://doi.org/10.1016/j.jiec.2021.04.050

Óxido de grafeno: una alternativa prometedora en la nanotecnología

OXIDO DE GRAFENO:

una alternativa prometedora en la nanotecnología

Desde que el grafeno fue aislado por primera vez en 2004 por el grupo de Manchester, este nanomaterial ha mostrado ser el más revolucionario para el desarrollo de nuevas aplicaciones a nivel industrial.

El grafeno posee extraordinarias propiedades eléctricas, ópticas, térmicas y una elevada resistencia mecánica. Las propiedades del grafeno son atribuidas a su estructura en forma de láminas bidimensionales (2D), formada por átomos de carbono enlazados de manera hexagonal y un espesor de un átomo de carbono.

En la actualidad existen diferentes métodos de producción de grafeno, estos se pueden clasificar en dos métodos, de acuerdo con su procedencia, el método “bottom-up” y el método “top down”. El método “bottom-Up”, consiste en la creación de estructuras de grafeno a través de bloques de construcción (átomos, moléculas), por ejemplo, mediante Deposición Química de Vapor (CVD); y el método de “top down”, involucra la producción del grafeno, a partir de la oxidación del grafito. El grafito está formado de láminas de grafeno que se encuentran apiladas unas con otras. En el siguiente diagrama, se representa el proceso de obtención del grafeno a partir de la oxidación del grafito.

Diagrama esquemático del proceso de obtención del GO, mediante la oxidación de grafito.

El proceso de oxidación del grafito, inicia con la adición de grafito en ácido sulfúrico (H2SO4), con agitación mecánica constante. Posteriormente, se añade lentamente permanganato de potasio (KMnO4), produciendo una reacción química que permite que el grafito (láminas de grafeno apiladas unas sobre otras) sea modificado químicamente en su estructura. Cuando el KMnO4 reacciona con el H2SO4, forma óxido de manganeso VII (Mn2O7), el cual es un agente oxidante muy selectivo sobre compuestos aromáticos doble enlace, como es el grafito. El agente oxidante ataca molecularmente la estructura de cada lámina de grafeno en el grafito, injertando grupos funcionales oxigenados (con oxigeno), como grupos epóxidos (C-O-C) e hidroxilos (-OH), sobre cada lámina, y grupos carboxilos (-COOH, CO2H) en las orillas de cada lámina, obteniendo óxido de grafito y óxido de grafeno (GO), ver Figura 1.

Figura 1. Estructura del óxido de grafeno

La incorporación de grupos funcionales oxigenados permite que un material como el grafito, altamente hidrofóbico (que repele el agua) y buen conductor eléctrico, pase hacer óxido de grafito y óxido de grafeno (GO), materiales altamente hidrofílicos, esto es se mezcan y dispersan facilmente con el agua (Ver Figura 2). El GO es químicamente similar al óxido de grafito, pero estructuralmente se diferencia por el arreglo y número láminas apiladas.

El GO se puede definir como una sola lámina de grafeno exfoliada o pila de pocas láminas (3-4) que esta funcionalizada con distintos grupos oxigenados. Entre sus principales características se encuentra que es hidrofílico, aislante e higroscópico (absorbe humedad). Por otra parte, las láminas de óxido de grafeno poseen una gran área superficial y exhiben alta resistencia mecánica y flexibilidad.

Aplicaciones

El óxido de grafeno ha atraído un gran interés en varios campos de la ciencia y la tecnología, debido a sus notables propiedades mecánicas, químicas, térmicas, entre otras. Por lo que numerosas investigaciones comenzaron, para aprovechar las propiedades del óxido de grafeno.

En el 2011, surgieron las primeras investigaciones del uso del GO como precursor en la producción a gran escala de grafeno, para uso como material de carga/refuerzo/ en matrices poliméricas, como el polietileno de alta densidad (HDPE) y el polietileno de baja densidad ( LDPE).

Para el 2014, el GO fue considerado factible para su uso como agente retardante a la flama. Actualmente aun siguen las investigaciones para funcionalizarlo con diferentes materiales poliméricos.

En el 2017, iniciaron los primeros reportes, de la fabricación de membranas a base de GO, ya que es impermeable a gases y líquidos, mostrando su capacidad para filtrar partículas pequeñas, moléculas orgánicas e incluso su uso para la desalinización del agua de mar.

En 2018, Energeia-Graphenemex inicio investigaciones sobre el óxido de grafeno como nuevo aditivo para la producción de recubrimientos anticorrosivos y antimicrobianos. Para el 2019, incrementaron estudios del óxido de grafeno en recubrimientos con comportamiento antibacteriano, asociado a que el GO, es capaz de penetrar la membrana celular de las bacterias produciendo estrés oxidativo e inhibiendo su reproducción.

En particular la funcionalización del GO, permite que sea aplicable en sistemas biológicos, desarrollo de biosensores para la identificación de moléculas específicas, sistemas de liberación de fármacos, entre otros.

Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial. Tiene amplia experiencia en la producción de óxido de grafeno (GO) a gran escala, con diferentes grados de oxidación y alta calidad para su uso en diferentes  aplicaciones e industrias. Actualemente, utiliza el óxido de grafeno en la producción de aditivos para concreto y recubrimientos anticorrosivos y antimicrobianos que se comercializan bajo la marca Graphenergy.

Referencias

  1. M. Fang, K. Wang, H. Lu, Y. Yang y S. Nutt, «Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites,» Journal of Materials Chemistry, vol. 19, pp. 7098-7105, 2009.
  2. B. Dittrich, K.-a. Wartig, R. Mülhaupt y B. Schartel, «Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene,» Polymers, vol. 6, pp. 2875-2895, 2014.
  3. Y.-j. Wan, L.-x. Gong, L.-c. Tang, L.-b. Wu y J.-x. Jiang, «Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide,» COMPOSITES PART A, vol. 64, pp. 79-89, 2014.
  4. J. Wang, C. Xu, H. Hu, L. Wan, R. Chen, H. Zheng, F. Liu, M. Zhang, X. Shang y X. Wang, «Synthesis , mechanical , and barrier properties of LDPE / Graphene nanocomposites using vinyl triethoxysilane as a coupling agent,» J. Nanopart Res, vol. 13, pp. 869-878, 2011.

El Grafeno, el material del futuro en la industria de recubrimientos y pinturas

GRAFENO EN LA INDUSTRIA

DE RECUBRIMIENTOS Y PINTURAS

Actualmente el grafeno es el aditivo nanotecnológico más revolucionario en la industria de recubrimientos y pinturas.

Regularmente los recubrimientos se usan con fines decorativos y para la protección de superficies, especialmente para la protección contra la corrosión, humedad, ensuciamiento, desgaste mecánico, entre otros.  A nivel comercial, existe una amplia variedad de recubrimientos a base de diferentes tipos de resinas y aditivos, su eficiencia está asociado generalmente a un aumento en el costo. Sin embargo, los recubrimientos siguen teniendo baja resistencia a la corrosión, a la abrasión y una limitada resistencia química y térmica.

Por lo que la industria de los recubrimientos, como muchas otras industrias, siguen en constante investigación y desarrollo de nuevas tecnologías, para la formulación y aplicación de nuevos y mejores recubrimientos.

Desde el año 2004, cuando fue aislado por primera vez el nanomaterial de grafeno, los científicos de la industria de recubrimientos han estado en la búsqueda de formas para utilizar el grafeno como aditivo, para con ello mejorar el desempeño y la tecnología de los recubrimientos en diferentes áreas de aplicación.

El grafeno tiene propiedades únicas, atribuidas principalmente a su estructura en forma de láminas bidimensionales (2D), formada por átomos de carbono enlazados de manera hexagonal y un espesor de un átomo de carbono. Este nanomaterial posee extraordinarias propiedades, las cuales incluyen alta conductividad eléctrica y térmica, y elevada resistencia mecánica. Además, posee otras propiedades distintivas, incluida, la impermeabilidad a los gases, resistencia química, potencial antibacteriano y gran área superficial.

La composición a base de carbono del grafeno y su compatibilidad lo convierte en un aditivo viable para recubrimientos poliméricos orgánicos. 

Entre las ventajas que brinda el uso de grafeno, esta su capacidad de incorporar características nuevas o mejoradas en los recubrimientos. Se pueden desarrollar diferentes tipos de recubrimientos multifuncionales, como:


  • Recubrimientos anticorrosivos

Uno de los principales usos de los recubrimientos con grafeno es la protección contra la corrosión. El grafeno crea vías que son muy tortuosas, lo que evita que las moléculas de agua y oxígeno y/o agentes químicos se difundan a la superficie de los materiales con base metálica, lo que da como resultado la protección del metal contra la oxidación y la corrosión.


  • Recubrimientos ignífugos

Aditivos convencionales basados en halógenos (bromo y cloro), así como fósforo, compuestos de melamina e inorgánicos, son utilizados para mejorar la resistencia al fuego de los recubrimientos, sin embargo, estos materiales son tóxicos para los seres humanos y el medio ambiente. Por otra parte, el alto contenido de estos materiales ignífugos puede causar el deterioro de otras propiedades en los recubrimientos.

Por lo que, la aplicación de grafeno como nuevo aditivo en recubrimientos, puede reducir o eliminar el uso de aditivos convencionales ignífugos, además puede proveer al recubrimiento de un mejor desempeño frente a temperaturas extremas durante un tiempo más prolongado y con mejor estabilidad mecánica.


  • Recubrimientos resistentes al desgaste o abrasión

El grafeno ha demostrado ser un candidato potencial para recubrimientos resistentes al desgaste, abrasión y a rayones. El grafeno es el material más ligero y doscientas veces más resistentes que el acero, además el grafeno tiene una alta capacidad para soportar grandes diferencias de presión y una alta resistencia mecánica.


  • Recubrimientos antiincrustantes

El grafeno es un buen candidato para uso como agente antiadherente. Su aplicación, reduce el problema de ensuciamiento y la deposición de materiales orgánicos e inorgánicos en cascos de barcos, buques o embarcaciones marinas, plataformas petrolíferas, entre otros.  Este tipo de aplicación se atribuye principalmente a la propiedad hidrofóbica (repelente al agua) y propiedades de barrera del grafeno.


  • Recubrimientos antimicrobianos

Resulta innovador el uso de láminas de grafeno u óxido de grafeno como agente antimicrobiano, debido a que existen estudios que han demostrado una fuerte actividad antimicrobiana contra una amplia variedad de microorganismos, incluyendo bacterias Gram +,  Gram – y hongos. Asociado a que los materiales grafenicos son capaces de penetrar la membrana celular de los microorganismos produciendo estrés oxidativo en inhibiendo su reproducción.

A nivel mundial, continúa la investigación y desarrollo de recubrimientos a base de grafeno. Actualmente son varias las empresas e Instituciones que han realizado formulaciones mejoradas con grafeno para recubrimientos, entre las que destacan:


  • Applied Graphene Materials, con sede en el Reino Unido,en colaboración con la empresa estadounidense Sherwin-Williams, se encuentran en el desarrollo de pinturas anticorrosivas a base de grafeno. Su objetivo, es incorporar grafeno en diferentes formulaciones, especialmente en pintura marítima para uso en cascos de barcos para protegerlos de la corrosión.
  • The Sixth Element Materials, empresa china, que se centra en la investigación, desarrollo y venta de materiales grafenicos, ha lanzado un imprimante anticorrosivo base grafeno-zinc para torres de energía eólica marítimas.
  • Graphenstone, empresa española, ha desarrollado pintura ecológica que combina tecnología de grafeno y cal. Obteniendo pinturas con mayor resistencia, flexibilidad, calidad y un periodo de vida mas largo en comparación con pinturas base cal convencionales.

Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea Graphenergy, ha lanzado una amplia gama de recubrimientos nanotecnológicos con grafeno. Estos recubrimientos ofrecen alta protección anticorrosiva y antimicrobriana. Además, de brindar alta resistencia al desgaste, resistencia a los rayos UV, impermeabilidad y una extraordinaria adherencia, con la finalidad de mejorar la vida de útil de cualquier superficie o instalación y reducir los costos de mantenimiento.

Los recubrimientos con grafeno, además de poseer protección anticorrosiva, pueden brindar mayor resistencia química, resistencia a los rayos UV, mayor rendimiento térmico en un amplio rango de temperaturas, además de recubrimientos más flexibles y resistentes al agrietamiento.

Referencias

  1. DuMée, L.F., et al., Carbon, 87, 395–408 (2015); doi:10.1016/j.carbon.2015.02.042.
  2. Wang, E.N., et al., Nano Lett., 15 (5), 2902–2909 (2015).
  3. J. Chen, H. Peng y X. Wang, Nanoscale, vol.6, pp. 1879-1889, 2014
  4. Md J. Nine, Martin A. Cole, Diana N.H. Tran, and Dusan Losic, J. Mat. Chem. A, 2015.
  5. Sachin Sharma Ashok Kumar, Shahid Bashir, K. Ramesh, S. Ramesh, Progress in Organic Coatings, 154, (2021)

El grafeno y su impacto en la industria del packing

El Grafeno

y su impacto en la industria del packing

De acuerdo con datos del Banco Mundial, cada año en México se desperdician 24 millones de toneladas de alimentos. Esto significa que, el 34% de la producción del país no solo NO es consumida, sino que además genera un gasto promedio de 491 mil millones de pesos.

Este impacto no solo es económico, sino que es un problema que se extiende al ámbito social, por la conocida crisis alimentaria y al medio ambiente, por los elevados requerimientos de agua para los procesos de producción de alimentos que no serán aprovechados y cuya descomposición aportará emisiones considerables de CO2 que contribuyen al calentamiento global.

Según la Organización de las Naciones Unidas para la Agricultura y la Alimentación, la pérdida y desperdicio de alimentos supera los 1,300 millones de toneladas anuales.

Dentro de esta problemática multifactorial, la industria del envase y embalaje, también conocida como “packing”, es un actor crucial considerando que existen condiciones inevitables como temperatura, humedad, iluminación, oxígeno y numerosas prácticas de manipulación a lo largo de toda la cadena de producción de los alimentos, que afectan su calidad, vida útil y la aceptabilidad por parte de los consumidores.

En la búsqueda de soluciones para mejorar la calidad de los productos para packing y, en consecuencia, de su contenido, la nanotecnología ha sido un gran aliado. Por ejemplo, para evitar la contaminación microbiana se utilizan nanopartículas de plata, de dióxido de titanio, de óxido de cobre, nanotubos de carbono u óxido de magnesio; para mejorar las propiedades mecánicas o de barrera, es común el uso de nanopartículas de silicato, arcilla, poliamida, hierro u óxidos de hierro, nanofibras de celulosa y para otras necesidades existen las nanopartículas de tungsteno, molibdeno, sulfato de bario, titanato de bario, quitosano, zeolitas, carbón activo, etc.

Las nanopartículas de Grafeno están conformadas principalmente por carbono al igual que el grafito y el diamante, pero con características multifuncionales. Esto quiere decir que, no tienen una única función, sino que, a diferencia de otras nanopartículas, el Grafeno por sus extraordinarias propiedades físicas y químicas, puede ser utilizado para distintos objetivos, por ejemplo, para diseñar productos más ligeros y resistentes, con mayor impermeabilidad contra líquidos y gases, además de proteger contra la contaminación microbiana y contra la radiación UV, entre otras propiedades que mejoran sustancialmente el desempeño de los compuestos con los que se combina.



“El Grafeno ha traspasado los límites de lo teórico para llegar a lo aplicado, combatiendo de manera segura y eficiente a los principales enemigos de los alimentos”, estos son algunos ejemplos de lo que se está desarrollando para la industria del Packing:

Tetra Pak
La empresa Sueca Tetra Pak, líder en investigación y desarrollo en el sector de envases, a través del proyecto Europeo Graphene Flagship estudia el uso del Grafeno para la fabricación de productos de bajo impacto ambiental para reducir la huella de carbono, mejorar el rendimiento de los materiales, agregar propiedades y optimizar la reciclabilidad.

Applynano
La empresa española Applynano utiliza nanomateriales, entre ellos el óxido de grafeno para favorecer la durabilidad y reciclabilidad de los plásticos, así como para mejorar las propiedades antimicrobianas, térmicas, eléctricas, entre otras.

Centro Tecnológico del Plástico (Andaltec)
El Centro Tecnológico del Plástico (Andaltec) dentro del proyecto europeo Grafood, tuvo la iniciativa de utilizar derivados del Grafeno para el desarrollo de envases activos para aumentar la vida útil de alimentos y disminuir el desperdicio de alimentos.

Energeia – Graphenemex®
La empresa mexicana Energeia – Graphenemex® a través de la división de polímeros Graphenergy Advanced Graphenic Solutions promueve el uso del Grafeno y sus derivados como nano- refuerzo del plástico para distintas industrias. Entre los beneficios que ofrece para la industria del packing, están la resistencia mecánica y a la degradación por radiación UV, mayor efecto barrera e interesantes propiedades antimicrobianas, sumamente prometedoras para prolongar el tiempo de vida de los productos y de su contenido. Asimismo, además de agregar valor a sus desarrollos con las propiedades multifuncionales del Grafeno y sus derivados, la compañía también tiene como objetivo apoyar otros proyectos de innovación con nanotecnología grafénica, a la vez que busca colaborar con la economía circular para mejorar la calidad de los materiales plásticos nuevos y reciclados, para disminuir el consumo de productos de un solo uso.

Nanocompuestos poliméricos con grafeno: el futuro de la industria

Nanocompuestos poliméricos con grafeno:

el futuro de la industria

Ciudad de México – Gracias a las extraordinarias propiedades, innumerables investigaciones y promesas de negocio en torno al Grafeno en el mundo, en 2021 su mercado fue valuado en 127,12 millones de dólares, previendo una tasa de crecimiento anual de más del 70% en el periodo de 2022 a 2027. Sin embargo, a 18 años de su aislamiento y pese a la enorme competencia por las compañías para desarrollar aplicaciones con este nanomaterial, aún son relativamente pocos los productos disponibles en el mercado que lo contengan y aprovechen sus beneficios. Esto se debe principalmente a la inversión y complejidad para la transformación del grafito en grafeno o en cualquiera de sus variantes (óxido de grafeno y óxido de grafeno reducido), a la dificultad de producción a escala industrial para tenerlo disponible como la materia prima fundamental en la transformación de nuevos compuestos, así como por la necesidad de conocimiento científico- industrial para la creación de aplicaciones eficientes y económicamente viables.

La empresa mexicana Energeia Fusion S.A. de C.V., se ha enfocado en resolver los obstáculos más representativos que el Grafeno ha enfrentado para su llegada al mercado, trabajando arduamente en la creación y estandarización de métodos y procesos propios que al día de hoy le permiten optimizar los recursos para el desarrollo de productos de calidad en corto tiempo.

Nanocompuestos poliméricos con óxido de grafeno

La división de polímeros de la línea Graphenergy Advanced Graphenic Solutions, forma parte de una nueva línea de aditivos nanotecnológicos altamente efectivos para la industria del plástico que, además del valor agregado que representan las propiedades multifuncionales que el grafeno aporta a los polímeros (resistencia mecánica, impermeabilidad, resistencia a radiación Uv y/o actividad antimicrobiana), también agrega valor para la economía circular, ya que permite utilizar, reutilizar y reciclar los productos plásticos, reducir la explotación de los recursos naturales y disminuir la generación de residuos, teniendo como resultado importantes impactos sociales, económicos y ambientales.

¿Cuál es la ciencia del Grafeno para el refuerzo de materiales?

  1. Las fuertes interacciones entre la región interfacial de la matriz polimérica y las partículas nanométricas del grafeno son decisivas para mejorar las propiedades de los materiales,
  2. La correcta integración del grafeno con los materiales poliméricos mejora la organización en su estructura, haciendola más densa y compacta y por lo tanto mejora las propiedades mecánicas.
  3. Mejora las propiedades de barrera contra líquidos y gases, aumenta el tiempo de vida útil del producto y permite tener diversas propiedades en un solo material, como: conductividad, resistencia a la radiación ultravioleta, impermeabilidad, flexibilidad, ligereza, actividad antimicrobiana, etc.

“Las propiedades del Grafeno son tan numerosas como las variables asociadas, por eso es difícil definir una fórmula estándar que satisfaga todas sus expectativas. El reto está en encontrar el equilibrio entre sus propiedades”.

A continuación, se describen algunos de los innumerables efectos y potenciales usos de los materiales grafénicos sobre distintas matrices poliméricas:

Resistencia mecánica

Los materiales grafénicos causan cambios en el comportamiento viscoelástico de los polímeros mostrando mayor resistencia a la elongación, propiedad interesante para el diseño de productos más resistentes a la deformación como productos de sellado, amortiguación, transporte o neumáticos, calzado, deporte, etc. Además de aumentar el módulo elástico, también mejora la resistencia al impacto de los polímeros en el rango del 20 al 200%, con reducciones en peso de hasta 35%, esta propiedad es de interés para la fabricación de productos más ligeros con igual o mayor resistencia que los plásticos convencionales, abriendo la posibilidad de reducir o sustituir el uso de piezas metálicas por piezas plásticas para la industria automotriz, de la construcción, seguridad, entre otras.  

Resistencia a la degradación

Por otro lado, este nanomaterial también ha demostrado otros aportes interesantes, por ejemplo, en pruebas de intemperismo acelerado realizadas a plásticos reforzados con grafeno y/o derivados se ha identificado que el uso de bajas concentraciones puede incrementar hasta 7 veces su resistencia a condiciones extremas de humedad, temperatura y radiación ultravioleta. Además, si consideramos que cuando el plástico es expuesto a la radiación Uv, este emite gases de efecto invernadero (metano y etileno). Por lo tanto, al aumentar la resistencia a la degradación, también podríamos favorecer a la reducción de estas emisiones, sin afectar la capacidad del PET para ser reutilizado o reciclado, sino que, por el contrario, usar grafeno le ofrece más oportunidades de ser reciclado.

Resistencia al fuego

Otra reconocida propiedad del grafeno es que es un excelente conductor térmico. En pruebas realizadas sobre distintos polímeros, aquellos modificados con óxido de grafeno además de mejorar sus propiedades mecánicas también mejoraron el retardo a la flama. Siendo el polipropileno el más beneficiado al identificarse un comportamiento autoextinguible. Esta aportación es atractiva para su aplicación en recubrimientos de cables y alambres eléctricos o materiales plásticos en general que requieran resistencia térmica.

Estas son sólo algunas de las múltiples propiedades que el grafeno y sus derivados puede ofrecer a la industria del plástico y a todas aquellas que se benefician de ella y que, pese a los esfuerzos por disminuir la circulación del plástico debido a los impactos ambientales, las ventajas que ofrece el grafeno pueden ser bien enfocadas para hacer más eficiente la utilización, reutilización y reciclaje del plástico.

A continuación, se describen algunos de los productos plásticos con grafeno que han logrado su comercialización:

  1. Energeia Fusion-Graphenemex a través de su división de polímeros desarrolla Masterbatches con óxido de grafeno para la producción de equipo de protección personal como caretas y telas no tejidas para mascarillas faciales. Asimismo, ha desarrollado polímeros modificados para concreto hidráulico y concreto asfáltico, además de la línea de recubrimientos Graphenergy para protección anticorrosiva y antimicrobiana (México),
  2. Directa Plus diseñó una máscara facial con grafeno para la lucha contra la pandemia causada por SARS- COV2 (Reino Unido),
  3. El productor internacional de ruedas Vittoria desarrolló las ruedas de bicicleta llamadas Qurano (Italia),
  4. Progress, con su modelo Progress Atom LTD brinda un mejor desempeño en cuanto a la resistencia al desgaste, mayor agarre, mayor impermeabilidad, disipación de calor más eficiente y mayor rigidez lateral, con un menor peso (España),
  5. Dassi Bikes construyó la primera bicicleta del mundo fabricada con grafeno (Reino Unido),
  6. FiiO Electronics lanzó auriculares con un controlador de diafragma mejorado con grafeno (China),
  7. NanoCase creó carcasas para smartphone para mejor disipación del calor (China),
  8. Catlike usa grafeno para producir cascos de ciclistas (España).

Referencias