Graphene in the paper industry

Graphene

in the paper industry


The paper industry represents a very broad and versatile market, in fact and despite the challenges it faces due to the impact of digital media and its competition with plastic, its world production continues to be considerable, exceeding 400 million tons distributed in products for containers and packaging, for hygienic and sanitary use, as well as paper for printing, writing and the press.

“It is estimated that by the end of 2022 cardboard will represent two thirds of world paper production”

On the other hand, the continuous need for innovation as well as the search for solutions to the problems inherent in these products, such as their easy contamination and permeability, have made nanotechnology remain an important tool with the use of different nanomaterials such as nano- cellulose crystals and nanofibers, nanoparticles of silicon oxide (SiO2), titanium dioxide (TiO2), zinc dioxide (ZrO2) and recently graphene materials such as graphene and graphene oxide (GO) 1 with the aim of design nano-scale building blocks to obtain denser and less porous networks that, in addition to improving the quality of the final product, also diversify its use.

Cellulose, in addition to being one of the most abundant natural polymers on earth, is also the main raw material for the paper industry. Graphene is obtained from graphite, a very abundant carbon mineral in Mexico”

How do graphene materials benefit the paper industry?


When talking about graphene, the main points of reference are its resistance, impermeability, flexibility, conductivity, lightness, biocompatibility, etc., all in a single material. Given this, it is important to understand that the behavior of graphene materials will depend, among other things, on the type of graphene, functionalization and concentration, but also on the processes involved in each industry and the nature of the materials with which it will be combined to transfer its properties and therefore there is no exact formula for each usage target, for example:


Mechanical strength- In the case of cellulose films, the presence of as little as 0.5% GO can significantly improve tensile strength, elongation at break and fracture energy by 78%, 172% and 397%, respectively; useful for its application in high performance bioplastic films2.


Antimicrobial protection- Among the benefits of interest to the paper industry are its biocompatibility, its physical barrier properties and its antimicrobial activity. For example, a study that prepared a paper coating with 0.05% GO reduced the growth rate of bacteria such as E. coli and S. aureus by 73% and 53%, respectively3,4. This is because GO helps limit microbial adhesion, replication and penetration.

Protection against UV radiation- According to another report, the use of 2% GO in cellulose films blocks UVA and UVB radiation by 66.7% and 54.2% respectively, without affecting the transmission of visible light, an interesting property for the design of protection and packaging materials.5


Barrier properties- Graphene materials present nano-channels between their sheets that represent a tortuous path for the passage of large molecules and, therefore, it is widely investigated both for its great impermeability against liquids and gases, but also for its potential benefits for the decontamination, purification and even desalination of seawater. Research carried out on cellulose acetate (CA) membranes for desalination described that the use of 1% GO improves morphology, hydrophilicity, porosity, roughness, mechanical resistance, thermal stability and, therefore, its operating efficiency, as well as it has happened with other types of membranes such as polysulfone, in which a concentration of 0.2% GO can be enough to improve their performance by up to 72%, in terms of water flow and salt rejection in tests with sodium sulfate. sodium6,7. The foregoing is not only reflected in the efficiency of filtration and/or desalination, but also the optimization of maintenance resources and energy consumption of said systems.


Energeia- Graphenemex®, the leading company in Latin America in the design and development of applications with graphene materials, continuously works to solve the obstacles that graphene faces to reach the market and, through strategic alliances with other industries, seeks to make this technology available to the industry for solving various problems.


References

  1. Trache, D., Thakur, V. K., & Boukherroub, R. 2020., Cellulose nanocrystals/graphene hybrids—a promising new class of materials for advanced applications. Nanomaterials, 10(8), 1523.
  2. M. Akhtari, M. Dehghani-Firouzabadi, M. Aliabadi, M. Arefkhani. Effect of graphene oxide nanoparticle coatings on the strength of packaging paper and its barrier and antibacterial properties. 2019., Bois et Forêts des Tropiques. 342, 69.
  3. W. Hu, Ch. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, and Ch. Fan. Graphene-Based Antibacterial Paper. 2010. ACS Nano, 4, 7, 4317–4323
  4. X. Liu, T. Zhang, K. Pang, Y. Duan and J. Zhang. Graphene oxide/cellulose composite films with enhanced UV-shielding and mechanical properties prepared in NaOH/urea aqueous solution. 2016., RSC Adv., 6, 73358
  5. Zhang, X. F., Song, L., Wang, Z., Wang, Y., Wan, L., & Yao, J. 2020., Highly transparent graphene oxide/cellulose composite film bearing ultraviolet shielding property. International journal of biological macromolecules, 145, 663.
  6. S. M. Ghaseminezhad, M. Barikani, M. Salehirad.  Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination. Composites Part B: Engineering. 2019., 161, 15, 320.
  7. B.M. Ganesh, Arun M. Isloor, A.F.Ismail., Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. 2013., Desalination., 313, 199.