Graphene in protection against electromagnetic radiation

Graphene in protection

against electromagnetic radiation

The development of communication technology together with electronic devices has generated great concern regarding the electromagnetic radiation emitted by these technologies.

Electromagnetic radiation is a type of electromagnetic field, that is, a combination of oscillating electric and magnetic fields, which propagates through space carrying energy from one place to another. Electromagnetic radiation can manifest itself in various ways, such as radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays or gamma rays and correspond to different wavelengths, ranging from kilometers (radio waves) to the order of picometers (gamma rays). The full range of wavelengths is what is called the electromagnetic spectrum (Figure 1.).

Electromagnetic radiation can be high frequency (radiation from mobile and wireless telephones, radio frequencies, TV waves, microwaves, radar, satellite signals, Wi-Fi, Bluetooth) and low frequency (fields generated by cables or electrical consumers).

Heat and electromagnetic radiation (EM radiation) are unavoidable by-products in electronic devices, especially those that operate at high frequencies. As electronic devices get smaller, they operate at higher and higher frequencies, generating even more heat and electromagnetic waves.

High frequency electromagnetic radiation not only degrades the devices themselves (producing heat), but also tends to interfere with neighboring electronic devices and most importantly, it has an adverse effect on human health as it can cause many diseases, such as leukemia, miscarriages, and brain cancer.

Therefore, the blocking or protection (shielding) against electromagnetic radiation could be one of the solutions to minimize health risks and for the protection of electronic equipment and/or devices. Metals are natural electromagnetic blocking materials, capable of reflecting electromagnetic waves due to their free electrons, which explains their high electrical conductivity and low penetration depth. However, their heavy weight, cost and the susceptibility of metals to corrosion make their use limited if not impossible.

The use of conductive coatings or paints to block electromagnetic radiation is the most viable option to solve the problem. Graphene is currently the most revolutionary nanotechnological additive in the coatings industry. Because graphene has extraordinary properties, which include high electrical conductivity, high thermal conductivity, and mechanical resistance. In addition, it possesses other distinctive properties, including gas impermeability, chemical resistance, antibacterial potential, and large surface area.

The electrical conduction capacity and thermal conductivity of graphene can be exploited in the formulation of shielding coatings against EM radiation, since graphene forms a continuous network along the surface of the coating, creating homogeneous films that block radiation. electromagnetic radiation while dissipating excess heat. In recent studies, it has been reported that the incorporation of carbon-based nanostructures, such as graphene in coatings or paints, allows the development of coatings with high electrical conductivity for shielding or protection against electromagnetic interference (EMI). The way to act with respect to high frequency electromagnetic waves is by refraction. Electromagnetic waves will bounce (reflect) off the treated surface similar to the effect of a mirror with respect to light (See Fig. 2). The barrier-effect in the propagation could be attributed to the contribution coming from the reflection capacity, the absorption and multiple internal reflections. The shielding efficiency increases with the addition of a higher concentration of graphene in the polymeric matrix of the coating. These graphene coatings can block more than 99.98% of high-frequency electromagnetic radiation.

Figure 2. Percentage of Reflection, absorption and transmission of pristine epoxy (a) and epoxy with graphene (b).
Taken from Adv. Electron. Mater. 2019, 5. 1800558

These coatings against electromagnetic radiation can act for both high frequency and low frequency, with an excellent quality of attenuation (decrease in intensity of signals or electric waves) of up to 38 dB, with one hand, and 47 dB if applied. two hands.

Energeia – Graphenemex®, a leading Mexican company in Latin America in research and production of graphene materials for the development of applications at an industrial level, through its Graphenergy line, is constantly researching and developing new multifunctional coatings and currently has for sale a wide range of nanotechnological coatings with graphene. Shielding coatings against electromagnetic radiation are currently being developed and evaluated. Coatings with high electrical conductivity, to reduce high and low frequency electrical fields respectively. These coatings will also offer anticorrosive and antimicrobial protection. In addition, to provide high resistance to wear, resistance to UV rays, impermeability and extraordinary adhesion.


  1. Suneel Kumar Srivastava, Kunal Manna, Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: a review, Journal of Materials Chemistry A, 10.1039/D1TA09522F, 10, 14, (7431-7496), (2022).
  2. Kargar, F., Barani, Z., Balinskiy, M., Magana, A. S., Lewis, J. S., Balandin, A. A., Adv. Electron. Mater. 2019, 5, 1800558.
  3. Seul Ki Hong et al 2012 Nanotechnology 23 455704.
  4. Lekshmi Omana, Anoop Chandran*, Reenu Elizabeth John, Runcy Wilson. Recent Advances in Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. Omega 2022, 7, 30, 25921–25947

Graphene-reinforced lime paints: the revolution in the construction industry

Graphene-reinforced lime paints:

the revolution in the construction industry

Although the exact date on which lime was discovered by man is not known, there are records dating back more than 14,000 years regarding its use. In the case of Mexico, it has been used since pre-Hispanic times both for construction and for nixtamalization, in ancient Greece it was used to color numerous frescoes (2800 B.C.- 1000 A.D.), the Chinese wall was built after stabilizing the soil with lime (500 AD) and among many other historical data, lime became popular in Europe during the Middle Ages for its disinfectant, breathable and fire-retardant properties, being used mainly as a coating on the exterior of houses and barracks. Subsequently, its implementation in the cities extended until the beginning of 1900 and it was not until the middle of that same century that it reached rural areas, a period in which synthetic paints gained ground over lime thanks to their ease of application, wide range of colors and low cost.

However, at the end of the 1970s and due to the awareness of the dangers of some synthetic paints with respect to health and the environmental pollution caused by certain components (heavy metals and volatile organic compounds [VOC]), lime paints once again had a boom as they are safer products and have a smaller footprint on the environment.

Among the benefits of lime-based paints or coatings are that they are 100% natural, ecological and VOC-free products, which absorb CO2 during their hardening process, which means that their use contributes to air purification. They are also breathable materials, that is, they allow the structures to “breathe” and do not concentrate moisture. In addition, they are thermoregulators, this means that they do not allow drastic changes in temperature in the buildings and, on the contrary, they help the buildings to stay cool.

However, and despite their great advantages, one of the main drawbacks of lime-based paints is their high permeability and, therefore, poor resistance to humidity, which is in turn related to limited adherence that requires constant repair work. maintenance. On the other hand, and although antimicrobial or biocidal properties are attributed to lime, it is not convenient to ensure that all the products that contain it offer this protection, since they are materials susceptible to being attacked by microbial species such as Aspergillus spp., Cladosporium spp, Fusarium spp., Trichoderma spp., Actinobacteria and Bacteroidetes among other species responsible for its biodeterioration as well as some infections.

With the aim of contributing to a sustainable present and future, in 2022 the strategic alliance between the companies Energeia-Graphenemex® and Oxical®, after almost 2 years of research, launched a new coating made from modified high-purity lime with Graphene nanoparticles, under the Graphenecal® brand.

Graphenecal nanoengineering reaches the market to create a new generation of lime-based coatings that exceed the characteristics of water-based paints made from chemical resins. The nanometric network that generates the graphene nanoparticles in combination with the high-purity lime and other natural products used in its formulation, compacts and organizes its entire structure at the molecular level, offering greater durability to the coating and improving its characteristics, thanks to the perfect balance that exists between greater impermeability (>50-80%) with adequate breathability avoiding the accumulation of moisture on surfaces, coupled with the excellent benefits offered by its great antimicrobial capacity (>99.9%) that prevents the adhesion and formation of microbial biofilms not only to protect against the biodeterioration of structures but also as a tool in infection control, among other advantages such as excellent adhesion, covering power, resistance against the effects of weather, greater thermoregulation, CO2 capture and lower carbon footprint in comparison with other products, no need for chemical additives, biocide products or contaminants, placing Mexico at the vangard in the development of environmentally friendly products.

Greater Impermeability

After 4 days of application, Graphenecal is 50% more waterproof than lime-based paints without graphene. As of day 30, this property rises to 85% without affecting the breathability of the product.
Representative image of the impermeability of Graphenecal on two different substrates.

Antimicrobial Capacity

On the graphene-free lime paint, a microbial biofilm was formed on more than 90% of its surface. The Graphenecal coated area remained free of contamination during the test.

Protection against bacteria, viruses and fungi with graphene coatings

Protection against bacteria, viruses and fungi

with graphene coatings

In less than 20 years the world has faced a series of abnormal phenomena caused by highly infectious pathogens. The easy and rapid transmission of infections forces us to seek increasingly efficient strategies to strengthen health services, in addition to representing a radical change in our lifestyle, where extreme hygiene techniques are in first place of importance to avoid the spread and massive contagion inside and outside hospitals.

Viral diseases of greater impact.

  • 2002-2003. Severe acute respiratory syndrome (SARS-Cov).
  • 2012. Middle East Respiratory Syndrome (MERS-Cov).
  • 2014- 2016. Ebola.
  • 2019- 2022. SARS-Cov-2.

>6.5 million deaths.

Dangerous bacteria for human health:

  • Staphylococcus aureus.
  • Streptococcus pneumoniae.
  • Pseudomonas aeruginosa.
  • Haemophilus influenzae.
  • Helicobacter pylori.

Common fungi in the domestic environment:

  • Aspergillus spp.
  • Cladosporium spp.
  • Alternaria spp.
  • Acremonium spp.
  • Epiccocum spp.
  • Penicillium spp.
  • Stachybotrys spp.

Graphene as an adjuvant in infection control

In 2018, Energeia- Graphenemex® launched the antimicrobial Graphenergy line, made up of two specialized vinyl- and vinyl-acrylic-based coatings with graphene oxide, whose antimicrobial potential is 400 times higher than common products, helping to keep surfaces free of fungi and bacteria for a long time.

In vitro studies and in a relevant environment carried out by the Laboratory of Pathology, Biochemistry and Microbiology of the Faculty of Stomatology of the U.A.S.L.P., showed that surfaces protected with antimicrobial Graphenergy remain free of microorganisms for more than 6 months, without the need for additional chemicals. Figure 1.

Fig. 1. Results at 2, 4 and 6 months on the protection of antimicrobial Graphenergy compared to a control group (No Graphene Oxide).
Important: A clean surface is in the range of 1-10 CFU/cm2.

In 2022, the strategic alliance between the companies Energeia-Graphenemex® and Oxical® is preparing to launch a new 100% natural coating, without toxic compounds (VOCs), highly waterproof, breathable and highly antimicrobial, made from high-quality and purity lime modified with Graphene nanoparticles, under the ecological Graphenecal brand.

Its extraordinary antimicrobial capacity is not only a great aid in keeping spaces free of microorganisms, but also protects surfaces against biodeterioration, particularly those with high historical value. Figure 2.

Fig. 2. Graphene-free lime paint has a microbial biofilm on more than 90% of its surface. The area covered with organic Graphenecal remained free of contamination for more than 100 days of incubation. The antimicrobial effect of organic Graphenecal is highly effective, with a reduction of microorganisms of 7 Log10.

Is graphene nanotechnology safe?

Yes, Graphenergy and Graphenecal antimicrobial coatings are as safe as any conventional paint or coating. The graphene and graphene oxide nanoparticles contained in its formulations do not shed or release toxic substances into the environment.

“Not all microorganisms are dangerous, but it is better to keep them away”

How do graphene materials work?

  1. Physical barrier- High impermeability. Graphene materials are usually presented in millions of blocks composed of 1 to 10 nanometric sheets similar to a pack of cards, with multiple sinuous paths between each sheet that act as an external barrier that suppresses the entry of essential nutrients for microbial growth.

  2. Graphene and its derivatives can act as electron donors or acceptors, altering the respiratory chain of the microorganism or extracting its electrons. This imbalance in the form of a nano-circuit is so fast that it does not give the microorganism time to recover and, therefore, inactivates it before adhering to the surface.

  3. Structural damage. The edges of the nanomaterial sheets act like small knives that damage or break the cell membrane of the microorganism, altering its functioning and preventing its viability.

Do graphene materials have antiviral activity?

The antiviral effect of graphene materials seems not to be very different from that described against fungi and bacteria. The hypotheses are directed towards an interesting synergistic effect between impermeability, structural damage and electrostatic interactions due to the positive polarity of some viruses (SARS-Cov-2) and the negative polarity of graphene oxide, in addition to its great protein-anchoring capacity.

Energeia- Graphenemex®is the pioneer Mexican company in Latin America focused on the research and production of graphene materials for the development of applications at an industrial level. In addition to adding value to its products with the multifunctional properties of Graphene and its derivatives, the company also aims to create strategic alliances to support innovative developments with graphene nanotechnology.


  1. García-Contreras R, Guzmán Juárez H, López-Ramos D & Alvarez Gayosso C. Biological and physico-mechanical properties of poly (methyl methacrylate) enriched with graphene oxide as a potential biomaterial. J Oral Res 2021; 10(2):1-9. Doi:10.17126/joralres. 2021.019
  2. UM.D. Giulio, R. Zappacosta, S.D. Lodovico, E.D. Campli, G. Siani, A. Fontana, L. Cellini, Antimicrobial and antibiofilm eficacy of graphene oxide against chronic wound microorganisms. Antimicrob. Agents Chemother. 62(7), e00547-18 (2018).
  3. H.E. Karahan, C. Wiraja, C. Xu, J. Wei, Y. Wang, L. Wang, F. Liu, Y. Chen, Graphene materials in antimicrobial nanomedicine: current status and future perspectives. Adv. Healthc. Mater. 7(13), 1701406 (2018). adhm.201701406
  4. Sydlik SA, Jhunjhunwala S, Webber MJ, Anderson DG, Langer R. In vivo compatibility of graphene oxide with differing oxidation states. ACS Nano. 2015. 9: 3866
  5. Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010. 10: 3318.
  6. Bhattacharya K, Farcal LR, Fadeel B. Shifting identities of metal oxide nanoparticles: focus on inflammation. 2014. MRS Bull; 39: 970
  7. Huang PJ, Pautler R, Shanmugaraj J, Labbé G, Liu J. Inhibiting the VIM-2 metallo-β-lactamase by graphene oxide and carbon nanotubes. ACS Appl Mater Interfaces 2015; 7: 9898.
  8. Moghimi SM, Wibroe PP, Wu L, Farhangrazi ZS. Insidious pathogen-mimicking properties of nanoparticles in triggering the lectin pathway of the complement system. Eur J Nanomedicine. 2015; 7: 263.
  9. Bhattacharya K, Mukherjee SP., Gallud A., Burkert SC., Bistarelli S., Bellucci S., Bottini, M., Star A., Fadeel B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine: Nanotechnology, Biology, and Medicine. 2016. 12. 333